7 research outputs found

    Performance of the MP570T pulse oximeter in volunteers participating in the controlled desaturation study: a comparison of seven probes

    Get PDF
    Background The performance of the pulse oximeter was evaluated based on the ISO 80601-2-61:2011 (E) guidelines. This study aimed to determine whether the various finger probes of the MP570T pulse oximeter (MEK-ICS Co., Ltd., Korea) would provide clinically reliable peripheral oxygen saturation (SpO2) readings over a range of 70-100% arterial oxygen saturation (SaO2) during non-motion conditions. Methods Each volunteer (n = 12) was connected to a breathing circuit for the administration of a hypoxic gas mixture. For frequent blood sampling, an arterial cannula was placed in a radial artery. The following seven pulse oximeter probes were simultaneously attached to each volunteer’s fingers: (1) WA-100 reusable finger probe (MEDNIS Co., Ltd., Korea), (2) MDNA disposable finger probe (MEDNIS Co., Ltd.), (3) IS-1011 disposable finger probe (Insung Medical Co., Ltd., Korea), (4) CJ340NA disposable finger probe (CHUN JI IN Medical Co., Ltd., Korea), (5) NellcorTM OxiMax DS-100A reusable finger probe (Medtronic, USA), (6) NellcorTM OxiMax MAX-N disposable finger probe (Medtronic), and (7) OXI-PRO DA disposable finger probe (Bio-Protech Inc., Korea). Results A total of 275 SpO2-SaO2 pairs were included in the analysis. The accuracy of the root mean square (Arms) of each probe was 2.83%, 3.98%, 3.75%, 6.84%, 3.43%, 5.17%, and 3.84%, respectively. Conclusions The MP570T pulse oximeter with WA-100 reusable, MDNA disposable, IS-1011 disposable, NellcorTM OxiMax DS-100A reusable, and OXI-PRO DA disposable finger probes meets an acceptable standard of SpO2 accuracy under non-motion conditions

    Attenuating Fibrotic Markers of Patient-Derived Dermal Fibroblasts by Thiolated Lignin Composites

    No full text
    We report the use of phenolic functional groups of lignosulfonate to impart antioxidant properties and the cell binding domains of gelatin to enhance cell adhesion for poly(ethylene glycol) (PEG)-based scaffolds. Chemoselective thiol-ene chemistry was utilized to form composites with thiolated lignosulfonate (TLS) and methacrylated fish gelatin (fGelMA). Antioxidant properties of TLS were not altered after thiolation and the levels of antioxidation were comparable to those of -ascorbic acid. PEG-fGelMA-TLS composites significantly reduced the difference in , , , and genes between high-scarring and low-scarring hdFBs, providing the potential utility of TLS to attenuate fibrotic responses

    Attenuating Fibrotic Markers of Patient-Derived Dermal Fibroblasts by Thiolated Lignin Composites

    No full text
    Engineering composite biomaterials requires the successful integration of multiple feed- stocks to formulate a final product for functional improvement. Here we engineered biomaterial scaffolds to attenuate the fibrotic phenotype exhibited by high scarring (HS) patient-derived der- mal fibroblasts (hdFBs) by valorizing lignosulfonate from waste feedstocks of lignin. We utilized phenolic functional groups of lignosulfonate to impart antioxidant properties and the cell binding domains of gelatin to enhance cell adhesion for poly(ethylene glycol)-based scaffolds. Highly ef- ficient chemoselective thiol-ene chemistry was utilized for the formation of composites with thio- lated lignosulfonate (TLS) and methacrylated fish gelatin (fGelMA) in the PEG(poly (ethylene gly- col))-diacrylate matrix. Antioxidant properties of lignosulfonate was not altered after thiolation and the levels of antioxidation were comparable to a well-known antioxidant, L-ascorbic acid, as evi- denced by DPPH (2,2-diphenyl-1-picrylhydrazyl) and TAC (Total Antioxidant Capacity) assays. Unlike porcine gelatin, fGelMA remained liquid at room temperature and exhibited low viscosities, resulting in no issues of miscibility when mixed with PEG. PEG-fGelMA-TLS composites signifi- cantly reduced the differential of five different fibrotic markers (COL1A1, ACTA2, TGFB1 and HIF1A) between HS and low scarring (LS) hdFBs, providing the potential utility of TLS in a bio- material scaffold to attenuate fibrotic responses. </div

    Immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome: A systematic review

    No full text
    Background: Immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome is a monogenic disorder characterized by early onset fatal multi-system autoimmunity due to loss-of-function mutations in the gene encoding the forkhead box P3 (FOXP3) transcription factor which is crucial for the development, maturation, and maintenance of CD4+ regulatory T (T-reg) cells. Various autoimmune phenomena such as enteropathy, endocrinopathies, cytopenias, renal disease, and skin manifestations are characteristic findings in patients affected by IPEX syndrome. Objectives: In this systematic review, we focus on both clinical and demographic characteristics of IPEX patients, highlighting possible genotype-phenotype correlations and address prognostic factors for disease outcome. Methods: We performed a literature search to systematically investigate the case reports of IPEX which were published before August 7th, 2017. Results: A total of 75 articles (195 patients) were identified. All IPEX patients included had FOXP3 mutations which were most frequently located in the forkhead domain (n = 68, 34.9%) followed by the leucine-zipper domain (n = 30, 15.4%) and repressor domain (n = 36, 18.4%). Clinical manifestations were as follows: enteropathy (n = 191, 97.9%), skin manifestations (n = 121, 62.1%), endocrinopathy (n = 104, 53.3%), hematologic abnormalities (n = 75, 38.5%), infections (n = 78, 40.0%), other immune-related complications (n = 43, 22.1%), and renal involvement (n = 32, 16.4%). Enteropathic presentations (P = 0.017), eczema (P = 0.030), autoimmune hemolytic anemia (P = 0.022) and food allergy (P = 0.009) were associated with better survival, while thrombocytopenia (P = 0.034), septic shock (P = 0.045) and mutations affecting the repressor domain (P = 0.021), intron 7 (P = 0.033) or poly A sequence (P = 0.025) were associated with increased risk of death. Immunosuppressive therapy alone was significantly associated with increased cumulative survival compared to patients who received no treatment (P = 0.041). Conclusions: We report the most comprehensive summary of demographic and clinical profiles derived from a total of 195 IPEX patients with deleterious mutations in FOXP3. Analysis of our findings provides new insights into genotype/phenotype correlations, and clinical and genetic factors associated with increased risk of death and response to treatment strategies

    Whole-Genome Analyses of Korean Native and Holstein Cattle Breeds by Massively Parallel Sequencing

    No full text
    <div><p>A main goal of cattle genomics is to identify DNA differences that account for variations in economically important traits. In this study, we performed whole-genome analyses of three important cattle breeds in Korea—Hanwoo, Jeju Heugu, and Korean Holstein—using the Illumina HiSeq 2000 sequencing platform. We achieved 25.5-, 29.6-, and 29.5-fold coverage of the Hanwoo, Jeju Heugu, and Korean Holstein genomes, respectively, and identified a total of 10.4 million single nucleotide polymorphisms (SNPs), of which 54.12% were found to be novel. We also detected 1,063,267 insertions–deletions (InDels) across the genomes (78.92% novel). Annotations of the datasets identified a total of 31,503 nonsynonymous SNPs and 859 frameshift InDels that could affect phenotypic variations in traits of interest. Furthermore, genome-wide copy number variation regions (CNVRs) were detected by comparing the Hanwoo, Jeju Heugu, and previously published Chikso genomes against that of Korean Holstein. A total of 992, 284, and 1881 CNVRs, respectively, were detected throughout the genome. Moreover, 53, 65, 45, and 82 putative regions of homozygosity (ROH) were identified in Hanwoo, Jeju Heugu, Chikso, and Korean Holstein respectively. The results of this study provide a valuable foundation for further investigations to dissect the molecular mechanisms underlying variation in economically important traits in cattle and to develop genetic markers for use in cattle breeding.</p></div
    corecore