83 research outputs found

    Fast water streams deflected by transverse walls

    Get PDF
    Imperial Users onl

    On the flexural vibration of cylinders under axial loads:Numerical and experimental study

    Get PDF
    The flexural vibration of a homogeneous isotropic linearly elastic cylinder of any aspect ratio is analysed in this paper. Natural frequencies of a cylinder under uniformly distributed axial loads acting on its bases are calculated numerically by the Ritz method with terms of power series in the coordinate directions as approximating functions. The effect of axial loads on the flexural vibration cannot be described by applying infinitesimal strain theory, therefore, geometrically nonlinear strain–displacement relations with second-order terms are considered here. The natural frequencies of free–free, clamped–clamped, and sliding–sliding cylinders subjected to axial loads are calculated using the proposed three-dimensional Ritz approach and are compared with those obtained with the finite element method and the Bernoulli–Euler theory. Different experiments with cylinders axially compressed by a hydraulic press are carried out and the experimental results for the lowest flexural frequency are compared with the numerical results. An approach based on the Ritz formulation is proposed for the flexural vibration of a cylinder between the platens of the press with constraints varying with the intensity of the compression. The results show that for low compressions the cylinder behaves similarly to a sliding–sliding cylinder, whereas for high compressions the cylinder vibrates as a clamped–clamped one

    Rotary cement kiln coating estimator: Integrated modelling of kiln with shell temperature measurement

    Get PDF
    Coating thickness protection in the burning zone of a rotary cement kiln during operation is important from the viewpoint of the kiln productivity. In this paper, an integrated model is presented to estimate the coating thickness in the burning zone of a rotary cement kiln by using measured process variables and scanned shell temperature. The model can simulate the variations of the system, thus the impact of different process variables and environmental conditions on the coating thickness can be analysed. The presented steady-state model derived from heat and mass balance equations uses a plug flame model for simulation of gas and/or fuel oil burning. Moreover, the heat transfer value from shell to the outside is improved by a quasi-dynamic method. Therefore, at first, the model predicts the inside temperature profile along the kiln, then by considering two resistant nodes between temperatures of the inside and outside, the latter measured by shell scanner, it estimates the formed coating thickness in the burning zone. The estimation of the model was studied for three measured data sets taken from a modern commercial cement kiln. The results confirm that the average absolute error for estimating the coating thickness for the cases 1, 2, and 3 are 3.26, 2.82, and 2.21cm, respectively

    Static and dynamic structural analyses for a 750 kN class liquid rocket engine with TVC actuation

    No full text

    Proximity-induced galloping of two interfering circular cylinders

    No full text
    corecore