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SYNOPSIS

Experimental work has been carried out to investigate the pheﬁomena
associated with a water jet of finite dimensions issuihg from an overflow
spillway when it is deflected by a smooth vertical transverse wall which
is perpendicular to the initial flew direction. The state of development .
of the supercritical flow at the toe of the spillway was quasiépotentiai
N all tests. Three distinct regions of fldw were identified. In region I,
which began at the toe of the spillweay,the water depth remained approximately
constant apart from a region adjacent to the outlet where a degree of lateral
discharge was cbserved. In region II, a hydraulic jump with a lateral dis-
charge was observed. In region III, the flow separated from the bed and
impinged violently on the wall and became entirely parallel to it, resulting

in a complex wave pattern at the wall.

Wzll and bed pressures, flow directions, velocities and the wave
heights were measured by using tapping points, a yawmeter, a pitot-static
tube and wave recording probes respectively. Redirection of the flow along
the channel centre line in both regions I and IT was found to be negligible.
In region I, the velocity profiles could be approximated by a power law
curve whereas in region II, the mean flow characteristics were studied in
a form relevant to a two-dimensionzl wall jet. The mean velocity of the
forward flow was found to be self-similar when a velocity scale and a length
scale were used. The streamwise development of these scales showed some
departures from those observed in classical wall jets due to the adverse
pressure gradient. A procedure was developed to predict the surface profile.
The waves at the retaining wall had a‘pseudo—périodic behaviour with signifi-
cant frequencies of less than 3 Hz. 2 mathematical relationship:'was developed

to design the wall height by a probabilistic approach.
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GLOSSARY OF SYMBOLS

The notation used is not unique; the same symbol may be used
to denote more than one quantity or variable, but the context will make
it clear which applies in a particular section of the thesis. As far as
practicable, a common notation has been used throughout, but if a special
usage is confined to one chapter or appendix, this is indicated in the

following listing:
Symbol Definition
A cross-sectional area of flow.

area under the pulse, Eg. (C.89).
a constant, Fig. C.6.

A(t) deterministic multiplication factor.
AI,AZ constants.
a amplitudé of a sine wave, Egq. (C.62).

regression constant, Eq. (III.4b).

a constant.

a gate opening, Fig. E.7.

a group of experiments, Section E.1ll.
a' an arbitary constant, Egq. (C.102).
a(t) a differentiable function of t.
a,...,aN/2 coefficients, Egs. (C.116).

a,....,an

b(t)

coefficients in Fourier series.

depth of flow at the vena contracta, Fig. E.7.

a differentiable function of t.

ac
B a fluctuating characteristic of a turbulent flow.
b an arbitary constant.

regression coefficient, Egs. (III.4a) and (III.11)
b channel width.

impingement width.
b group. of experiments, Section E.ll.
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) o coefficients, Egs. (C. .

bo' ' 'tk/Z oeffici » Egs. (C.1lle).
bo,....,bn coefficients in Fourier series.

Cd coefficient of dispersion, Eg. (F.41).

overall discharge coefficient, Egq. (E.8).

Cf » coefficient of boundary shear stress, Eq. (F.5).
C(f) Fourier Transform of Dirac Comb.
c ‘ecalibration constant, Eq. (E.25).

a constant.

C1'C2’C3 'constants.

c(t) Dirac comb along time axis.

ey discharge coefficient, Eq. (E.6a).

cf skin-friction coefficient, Eq. (D.40c).

cé ’ skin-friction coefficient, Eq. (D.52).

<, correction coefficient, Eq. (E.7).

D ' external diametexr of the pitot-static tube.

d depth of flow in an open channel, Eg. (B.2).

thickness of the plane jet (orxr the slot height),

Fig. D.l.

4, depth of flow before the hydraulic jump,Fig. B.Z2.

d2 v depth of flow after the hydraulic jump,Fig. B.2.

%5§n1§g2 depths of the supercritical water flow at the
toe of the spillway along the channel centre
line, Figs. E.21 and E.22.

dt tailwater depth.

dw mean momenturn depth.

e the exponential.

e total head of a cross - sectional area of flow
{specific energy) .

s specific enexgy at the toe of the spillway.

€146, specific enerxgies of flow before and after the

hydraulic jump respectively, Fig. B.2.
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" kinetic energy flux of a cross-sectional area
{pf flow per unit time, Eq. (B.8).

6L energy loss, Eg. (B.17bh).

s total energy, Eq. (B.9).

Cu. aﬁerage total wave energy per unit surface
area, Eq. (C.64).

exp ‘ the exponential.

| F(Rprobéb S a function of probe Reynolds number, Eg.(E.17).

FI’FZ’F3 components of the body force in the #,y;z -
directions respectively.

F(t) _ o 2 function of parameter t.

Fr 7 Froﬁde number.

Fr, Froude number of the £low preceding the hydraulic
jump, Eq-(3715); '

f;fo v _ frequencies.

£ (to) | function of tg,Eq. (I.2).

£(t) : function of variable t, Egs.{C.69) and (C.77b).

£4(t) , £5 (1) ' functions of variable t, Eg.{C.79).

£(B) function of B8, Eq.(E.23).

£(n) S function ofn , Egs.(D.12a) and (F.18a);

f(x?) function of the random variable xz; Eg. (II.1).

£y  fundemental frequency.

fl'£2""€§ frequencies, Eq. (C.12).

fiiuy,P,x,v) function of gj,o,x and v, Eg.(D.37a).

f2 u},p,x,v) function of l*{l{,p,x and v, Eq. (D.37b).

.fB(gi,p,x,v) function of Mj;ohx and v, Eq. (D.37c).

f;’__.‘%; frequencies, Eg.(C.133).

fmax maximum frequency.

fN Nyquist frequency-

fP frequency of the pth harmonic of the Fourier

series.
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power spectral density function defined fcxr

non-negative frequencies only..
estimated power spectral density fﬁnction.
power spectrum of a continuous time series.
power spectrum of a discrete time series.

population skewness coefficient, Eg. (C.35).

acceleration due to gravity.

estimated skewness coefficient, Eg. (C.36).

.function of £, Egs.(C.14) and (C.77a).

functions of variable £, Eq.(C.79).

functions of the nozzle Reynolds number,
Egs. (D.38a), (D.38b) and(D.38c).

a function of variable t.

a function of variable §, Eq. (C.78).
function of n, Eg.(D.14).

water level over the spillway.crest.
function of wp, Eg.(C.74b).

water depth, Fig. E.7.
total upstream energy head over the spillway

crest, Eg. (E.6.a).
function of w, Eg. (C.76b).

height of the spillway crest above the channel
bed.

nth complex Fourier series coefficient.

height of the water surface above the datuﬁ,

Pig. IV.1.
static reading, Eq.(E.18b).
pitot reading, Eg.(E18b).
water depth.
input (or the reading).

raw periodogram defined for non-negative

frequencies only.

intergquartile range, Eqg.(C.41).
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15"

)/....1 .

a counter.

fluctuating part of the input I with respect

to its average I.
function of u, Eq.(c;84).
function of £, Eq.(c,112).
a counter.
calibration factor.
constants, Eg.(E.19).

shape factor, Eg. (F.4).
a varizble less than unity, Fig.(C.17).
calibration factor, Eg. (E.25).

a counter.
length of the weilr crest.
length of the hydraulic jump, Fig.B.2.

longitudinal distance between the toe of the

forced hydraulic jump and the retaining wall.

an integer, Eq.(C.133).

impingement length.

integral magnitude, Eq.(C.72).
an integer, Egs.(C:127) and (C.128).

jet momentum flux at the nozzle, Eg.(D.37).

pressure force plus the momentum of a cross-—

sectional area of flow per unit width.

pressure force plus the momentum per unit width

of the flow at the toe of the spillway.

an integer.

a counter.

an integer, Eqg. (C.132).
rth central moment.
median.

number of data points ér sample size, Eq.(C.32).

integer number, Fig. C.10



|

P(y)

P(v)
Po
Py

pl.,p2,p3
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sample size, Egs. (C.31).
total number of measurements.
a counter.

an integer.

number of sample functions in an ensemble,
Fig. (C.9). _
number of parameters in Buckingham 7 theorem.
co-ordinate direction, Fig. (IV.1).

an exponent.

probability of exceedance of the wave height
above the retaining wall.

bed pressure, Fig.(F.11).

pressure at any point, Eg.(D.1).

pressure outside of the jet, Eg.(D.9a).

pressure outside of the jet, Egq. (D.7).
average power of a process,Eq.(C.52).

probability distribution function (cumulative

probability distribution function) ,Eq.(C.27).

pressure measured by static orifice.
data point in millivolts, Eq. (E.25).
an exponent, Eq-(D.lBa).

static pressure.

a counter.

probability density function of the variable y.
water depth Y, exﬁressed in millivolts.
pressure measured by pitot orifice.

positions of the retaining wall with respect

to the chute.
discharge.
discharge, Eqg. (D.53).

discﬁarge per unit wicdth.

an exponent, (Eg.D.13b).
repeatability.

nozzle Reynolds number, Eq.(D.39).



R _ .
prope

Ry (tl £ T)
RY(T)

Ry(t,r),...,Ry(t,TO
1 n

RXY(T)

R (71)
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amplitude of the pth harmonic, Eg. (C.118a).
Reynolds number based on the length along the
flat plate.

probe Reynolds number.

Reynolds number based on the length along the
spillway.

Reynolds number of the water jet at the toe of

the spilllway.
ensemble autocnrrelation, Egs.(C.18).
autocorrelation function.

sample autocorrelations.

cross—correlation function between random

variables x(t) and y(t).

estimated cross—-correlation function between

random variables x(t) and y(t).

Pearson product — moment correlation coefficient.

a counter.

radius of curvature, Eqgs. (IV.2)
number of basic quantities in Buckinghamihtheorem.

pipe radius, Eq. (F.6) .

estimated autocorreiation coefficient.
uncertainity, Eq. (E.4).

output (or the quantity being measured).
sample standard deviation.

fluctuating part of the output S with respect
to its average S. |

a counter, Eg. (C.140).

an exponent, Egq. (D.32).

co-ordinate direction.

standard deviation of a set of n values of the

independent variable x.
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standérd deviation of a set of n values of the

dependent variable ¥y.

’ standard deviation of a set of n measdi:ements .

of a quantity -
standard deviation of the mean.gi

relative standard deviation of a set of n

measurements of a quantity 4.
sample variance.

period in which the process repeaté itsélf
(wavelength), Eg. (C.4). _

observation time (length of the record or period
of sampling).

averaging time.

width of data window,
total time, Fig. C.10.

time variable.
a distance, Fig. E.21.

a variable.

an exponent, Eg. (D.46).
a variable, Egs. (I.l).
starting time.

time variables.
distances, Fig. E.22.

value of the mathematical Student I\function,

Table E.1.
(100k) th percentile.

value of the mathematical Student £ function,

Eg. (III1.8d).

turbulent time mean velocity in'the x co—-ordinate
direction. '

velocity at vena contracta, Eg.(E.l8a).

velocity of the undisturbed stream, Eg.(E.17}.

velocity at a distance y above the bed or the
flat plate.
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uniform velocity at the nozzle, Fig. D.1l.

mean velocity, Section E.6.5.1.

velocity of the approaching flow to the flat
plate, Fig. F.3.

shear velocity.
average flow velocity.

velocity at a distance ¢ from the pipe wall,

Eq. (F.6).

local main stream velocity component in the

direction parallel to the plate.

average velocities before and after the hydraulic

jump, Eq.(B.14).
mean velocity in section ab, Eq.(IV.1).
maximum velocity at any section or velocity scale.

turbulent fluctuating velocity in the x co-ordinate
direction. '

a variable.
paper speed.
instantaneous velocity vector.

turbulent time mean velocity in the y co-ordinate

direction.
turbulent velocity veclor.

turbulent fluctuating velocity in. the y co-ordinate

direction.
ranked array of a digitised sample record.
variables, Eq.(E.5).

turbulent time mean velocity in the z co-ordinate

direction.
data window Fourier Transform multiplief.
function of £, Eq.{C.108).

turbulent fluctuating velocity in the z co-ordinate
direction.

wave height, Eq.(E.31).



w(t)

1’°°"""n

wh_

Xl,...,x

X eaapX
A1I ’

X

20

danning window weighting function.
data-window function in timé domain.
uncertainty intervals, Eg.(E.5).
retaining wall height.

combined uncertainty introduced by the non-
linearity of the potentiometers, resolution

limitation and operational error.

total uncertainty in wave height measurement, .

Eg.(E.31).

total uncertainty from the reading by the point
gauge and from the application of the least
squares method associated with the water

depth Yo in the calibration well.
uncertainty in the function ¥.
a variable.

longitudinal distance from the retaining wall

in the upstream direction.

co-ordinate direction (co-ordinate position) .

a variable.

length of the potential core, Fig.D.1.
N values assumed by the variable x.
independent variables, Egs. (IIL.l).

arithmetic mean of a set of n values of the
independent variable x.
longitudinal distanée from the efflux section,

Fig.D.1.

longitudinal distance from the toe of tha forced
hydraulic jump in a downstream direction along

the channel centre line.
co-ordinate position, Fig. F.3.

straight line length begining from an arbitrary

point on the spillway crest, Fig. F.8.

amplitude of sinusoidal function y(t), Egs.

(C.2) and (C.85).
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amplitudes'of cosine waves, Egs. (C.85) and (C.97).
coefficients in Fourier series.
vertical distance above the channel hed or the

flat plate.
axis in the direction of the height of the nozzle.

co-ordinate direction (co-ordinate position).

distance from the pipe wall, Eq.(F.8).
vertical height above datum, Egq. (IV.2).
a gquantity subject to measurement, Section

E.2.1.1.

sample mean.
arithmetic mean of a set of n values of the

dependent variable y.

arithmetic mean of the n measurements of the

variable Y.

continuous time dependent wvariables.

time series of zero mean (fluctuating in water

-surface elevation about a zero mean),Eq.(C.59).
period functions'with beriod T.

sample functions.

continuous time dependent variables, Fig;c.l.'
water depth in the calibration well, Eq.(E.26e) .
constants, Eq.(C.28).

discrete time series of size N.

dependent vafiables, Eg.(IIX.1Db).

water levels in the calibration well.
measured quantities, Eq.(E.1).

co-ordinate direction (co-ordinate position) .
energy coefficient.

100(1-0¢) is the confidence intexrval.

momentum coefficient.

a dimensionless coefficient, Eq. (E.22).

momentum coéfficients of flow before and after

the hydraulic jump respectively, Eg. {(B.14).
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Y population kurtosis coefficient, Eq. (C.37).

; estimated kurtosis coefficient, Eg. (C.38).

¥(D autocovariance function.

Ad ' depth interval in velocity measurements.

Ah difference in surface elevation,Figs.E.9 .and IV.2.
At sampling interval (increment of time).

Atl""'AtN time increments, Fig.C.10.

Ax longitudinal distance between the static and the

pitot orifices, Fig.E.9.

AX digitisation interval.
5 boundary layer thickness.
% length scale.
s depth of forward flow.
2
8 displacement thickness.
” P
5m momentum thickness.
su total deviation from the mean velocity Um
Eq. (B.4).
e small positive time increment, Fig.I.l.
n dimensionless co-ordinats,Egs.(D.12b) and
(F.18b) .
a dimensionless coeificient, Eq.(B.7b).
n dimensionless co-ordinate, Table D.2 and
1
Fig. F.17.
£ a variable.
6 angle between the spillway face and the
horizontal.
phase angle.
a variable.
6 (£) function of frequency.
0 initial phase angle with respect to time
o}

origin (phase angle) .



phase angles.

.
61' n
61""’en phase angles.
u dynamic viscosity.
population mean value.
fi } estimated mean wvalue.
u (L)) ensemble mean of the dependent variable y -
y 1
at time tyr Eq. (c.17).
U peeeen,ll sample means, Eqg. (C.15).
Y1 Yh ‘
v coefficient of kinematic viscosity.
number of degrees of freedom.
T constant equal to 3.1416.... .
o mass density of fluid.
b (t) estimated cross-correlation coefficient
4 between random variables x(t) and y(t).
o population autocorrelation coefficient.
h | .
5 summation sign.
o population standard dewviation.
02 population variance.
time lag (time displacement) .
T
total shear stress.
boundary shear stress (or wall shear stress).
To
] turbulent shear stress.
Tt
5 redirection angle.
6 phase of pth harmonic, Eq. (C.118b).
b
6 (x,t) a continuous function of x and t.
7 .
" root mean square value.
a function, Eq. (E.5).
11,’,2 mean square value.
®. 0 angular frequenciés-
’
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Nyguist angular freguency.

angular fregquency, Eg. (C.73a).

dummy variable.

a dimensionless variable defined in Eq. (F.38).
partial derivative.

integral.

SUBSCRIPTS

section before the hydraulic jump.

section clecse to the channel outlet.

section after the hydraulic jump.

cheannel centre line section.

section close to the side wall.
donotes emphasis on continuity.
denotes emphasis on discrete function.

subscript in tensor notation, Eg. (D.1)

unless otherwise defined in .text.

subscript in tensor notation, Eqg. (D.1)

unless otherwise defined in text.

subscript in tensor notation, Eq. (D.1)

unless otherwise defined in text.

average over cross section unless otherwise

defined in text.
maximum.
minimum.

mean time average of ( ).
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MAJCR ABBREVIATIONS

Symbol Definitien

ac. f. autocorrelation function.

acv.f. autocovariance function.

c.c.f. cross correlation functicn.

d.£. degrees of freedom.

d.f.d. degrees of freedom of deviations zbout the
regression.

d.f.r. degrees of freedom attributable to the
regression.

da.f. t. total degrees of freedom.

e.d.f. energy density function.

erf( ) error function of ( ).

E[ ] expected value of [ ].

F.F.T. Fast Fourier Transform.

F[ 1 . Fourier Transform of [ ].

L.D.A. Laser Doppler Anemometer.

l.s.m. least squares method.

m.s.d. mean square of deviations about the regression.

m.s.r. mean square attributable to the regression.

Prob [ ] probability that [ ].

p.d4. probability distribution.

p.d. £f. prcbability density function.

r.h.s. right - hand - side.

r.v. random variable.

r.m.s. root mean square value.

sec second.

s.d.[ ] standard deviation of [ ].

s.e. (a) standard error of the regression constant.

s.e. (b) standard error of the regression coefficient.

s.e.(y) standard error of the predicted value for a

® given X.

s.s.d. sum of squares of deviations about the regression.

S.S.r. A sum of sguares attributable to the regressicn.

s.s.t. total sum of sqguares.

var [ ] variance of [ ].
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Gamma function with argument v/2.

increment.

Dirac delta function of ( ).

a chi-squared random variable withv degrees of
freedom.

Dirac comb with spacing equal to At.

the first derivative of ( ) unless otherwise
~defined in text.

the second derivative of () unless‘otherwise
defined in text. )

the mth derivative of ().

absolute value of ( ).

an ensemble of sample functions unless otherwise

 defined in text.

estimate of ( ).

denotes emphasis ©on continuity.
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The phencomena associated with a fast water stream deflected by
a transverse wall are of considerzble practical interest and occur in a
number of engineering situations. Water jets issﬁing from hydraulic
structures such as spillways or sluice gates which are deflected over a
shoxt distance by a transverse barrier are examples of such situations.
This thesis describes an experimental and analytical study of the effect
on a plane turbulent water jet of finite dimensions when it is deflectec
by é plane smooth vertical transverse wall which ié perpendicular to the
initial flow direction. Since the normal impingement of water jets on

smooth walls is the simplest configuration, its study should be of

importance in understanding of more complicated situations.

The work which instigated the present research was undertaken
at Imperial College in 1976 by Chiari when he was trying to obtain an
insight into the pool-ladder stilling pond scheme. In the earlf experi-
ments, only the gross characteristics of the problem were studied with
very little attention being given to the detailed flow processes; A
better undertstanding of these gross characteristics should result in a
more rational and economical design procedure for this type of hydraulic

phenomenon.

Plates I,II and III show a supercritical water flow issuing

from an overflow spillway onto a smooth horizontal channel of the same

width, with the flow being deflected by a plane smooth vertical transvexse

wall which is perpendicular to the flow direction. Observation of the
flow indicated that as the water came down from the spillway, the free
surface converged steadily until it attained a minimum depth at a section

situated close to the- toe of the spillway. At this section the free

surface became horizontal. From this section to the retaining wall, three

reasqnably distinct regions of flow could be identified. In region I,
the water depth remained approximately constant with the exception of a
region adjacent to the outlet where a degree'of lateral discharge was

observed. In region II a hydraulic jump with a lateral discharge was

observed. In region III the flow impinged violently on the retaining wall

and became ebsoclutely parallel to the wall, resulting in a complex wave
pattern adjacent to the retaining wall. It is apprbpriate therefore to

refer to region III as the 'impingement region'. In regions I and II, in
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a section parallel to the retaining wall,the water surface profile decreased

considerzbly near the channel.outlet due to the lateral discharge.»



PLATE 1 A SUPERCRITICAL WATER FLOW DEFLECTED
BY A TRANSVERSE BARRIER



PLATE 11 PLAN VIEW

PLATE T11 SIDE VIE

A FAST WATER STREAM DEFLECTED BY A TRANSVERSE WALL
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The fast water stream in region I which contained a large amount
of kinetic energy was complicated by the development of seéondary flows
and the presence of cross waves. However, there #as very little rédirection
of the supercritical flow along the channel centre line in this region.
In region II, the water surface began to rise sbruptly from the toe of the
hydraulic jump, which oscillated zbout a2 mean position. Since this hydraulic
Jjump was formed dpe to the presence of a barrier, it is appropriate to
féfer to it as a 'forced' hydraulic jump. The distinctive feature of region
II was the presence of a violent roller in the upper part of the fldw; this
" roller started at the toe of the hydraulic jump and ended before it reached
the relaining wall. Due to the surface breaking, a considerable amocunt
of air was entrained in the forced hydraulic jump. The velocity of the
flow in region II varied considerably in both magnitude and direction, and
éven undexwent full reversal in the roller. The flow in the roller of the
forced hydraulic jump, which is opposed to the main stream, is known as the-
backward flow or return flow. The behaviour of the roller, however, was
found to be vefy ccmplicated. The roller influenced the production of
turbulent energy from the mean flow and also its dissipation. The forward
flow in regicn II undexwent a deflection from the channel centre line larger
than that in region I. Finally, the forward flow of region II became |
separated from the bed, impinged violently on the retaining wall and beczame’
parallel -to it.Due to the impingement, most of the reméining kinetic energy
of the flow was convertéd into potentizal enérgy. The violent impinéement_
of the flow on the retaining wall generated waves which were irregular

both 'in height and period at the retaining wall.

Observation of the flow indicated that with the retaining wall
at a fixed position with respect to the spillway, an increase in the dis-
charge 6f the incoming flow from the spillway caused the wave Height ét the
retaining wall and the jump length (the distance between the toe of the
Jump and the retaining wall) in any section'parallel to th9 channel centre
line to increase. It was observed that if the discharge was high enough,
the toe of the hydraulic jump would reach the toe of the spillway. Further-—
more, it was found that with a constant discharge of incoming £low, the wave
heights at the retaining wall and the jump. length were not changed appreciably

by changing the position of the retaining wall with respect to the spillway.
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Due to the existence of three different regions of flow with
different characteristics, the presence of a free surface, the turbulent
nature and non-uniform flow condition, the behaﬁiour of the flow was not
suitable for a completely theoretical analysis. In view of this,
experimentalvmethods had to be used to investigate the problem on a reduced
scale model; model studies being a cheap and relatively relisble way of

solving what might otherwise be intractable problems.

The main objective of stddying regions I and II was to determine
the velocity and pressure fields. Investigation of the velocity field,
especially ih region II, was of considerable impoftance, since it was
thought that high velocity jet might travel along the bed without much
retardation to‘considerable distances, thereby causing scour.Flow explora-
tion in these two regions was restricted to thevturbulent mean motion of
" the phenomenon. The waves associated with the impingement of the flow c¢n
the retaining wall were of a fluctuating nature. The difficulties caused
by the waves were mainly due to their excessive height. The overtopping
of water on thevretaining wall could jeopardize the structure. ©On the
other hand a very consexrvative wall height couid increase the cost of the
work. It was the cbject of this research to investigate the behaviour of
the waves at the retaining wall through their periods and heights by
obtaining their complete time history records. Due to the separation of
the flow, the strong curvature of the streamlines and the existence of
complex waves in the impingement region, thebpiessure at the wall was
non-hydrostatic. A further insight into the flow characteristics in the
impingement region was gained by studying the pressure distribution on

the retaining wall.
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B.1 GENERAL

The rapid transition from supercritical flow to subcritical
flow is known as a hydraulic jump and has great significance in many
branches of science and technology. The hydraulic jump which is an
area of considerable energy dissipation is an important field of
study for civil, chemical and mechanical engineers as well as for those
working in fluid mechanics. For this reason the existing literature
on different types of hydraulic jump is large and continues to grow
rapidly every year. In order that review of literature on different
kinds of hydraulic jump would not become too large, it was felt neces-
sary to select from this array of publications those which most closely
applied td the particular area of study in question. However, before
discussing any literature, some basic principles of dimensional analysis

and similarity must be defined.
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B.2 DIMENSIONAL ANALYSIS AND SIMILARITY

The theory of dimensional analysis has two major fields of
application, firstly the tidying up of arguments involving a lérge
number of physical parameters, and the development of criteria govern-
ing dynamic similarity between two flow situations which are geometri-
cally similar but of different size. A necessary condition for empioy—
ing dimensional analysis is that the variables involved in the physical
phenomenon should be known; the relationships between the variables only
are being sought. By a dimensional analysis pracedure, the phenomenon
may be formulated as a relation between a set of dimensionless groups

of the variables.

The basis of the theory is the 'Buckingham 7 theorem', which is
- given here without proof. It states the "the number of independent
dimensionless groups that may be employed to describe a phenomenon. known
to involve,n, variables is egual to the number (n-x), where, 4, is
usually the number of basic dimensions needed to express the variables
dimensionally"'. Dimensional analysis must be used cautiously in the
pseudo-science of engineering fluid mechanics, where the main object is
to produce formulae accurate enough for quantitative engineering design.

Such formulae can be broadly classified as being (Blench, 1969):

(a) Borrowed from rigorous hydrodynamics and true for fluids and

conditions idealised from reality and is sometimes quite unrealistic.

(b) Obtained by a speculative hypothesis as to the mechanism of
a partially understood process, and then by applying more or less
rigorous dynamics to the speculative premises. The results are only
as good as the speculations made and may be misleading,sometimes contain-

ing dynamical impossibilities.

(c) Obtained by the fitting of mathematical curves to plotted aata
without any bias towards a particular speculative hypothesis. This
approach is unlikely, except in simple cases, to deal with all factors
physically relevant to even the observed situation; the experimenter or

cbserver may even be ignorant of the existence of some factors.
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B.3 » THE ENERGY AND MOMENTUM COEFFICIENTS

Ie open channels, due to the presence of a free water surface

and the friction. along the solid boundary, the velocities in the channel

are not uniformly distributed over the channel cross-section. In fact
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Fig. B.1 Curves of equal velocity in a channel section

viscous effects make the velocities lower near to the solid boundaries
than at a distance from then. The average flow velocity can be calcu-

lated from the following relationship

B.1)

where O is the discharge and A is the cross-sectional area of the

channel and subscript m represents the average over the cross-section.

B.3.1 Energy Coefficient

Due to the non-unifcrm velocity distribution (Fig. B.1), the
true mean velocity head across the channel section, (Uz)m/Zg, where g
is acceleration due to gravity,will not necessarily be equal to Um’/2g.
The value of the total head of a cross-sectional area of flow (specific
energy) is therefore given by

u? :
e = d+ o= o (B.2)
29 )
where 4 is the water depth and ¢ is the correction coefficient to be
applied to the velocity head as calculated from the mean velocity. The
coefficient @ which is also xnown as the Coriolis coefficient, energy
coefficient or velocity distribution coefficient can be mathematically

expressed in the following form

1
2
Qu

Aé 3 I ulaa
m

a

[van =
A

(B.3)

However, in this context, it should be noted that Um is not a directly

measurable quantity but a derived one (Eg. B.1).
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Just as in solid mechanics, any area A = f dA has first and
second moments in x and y co-ordinates defined as Ahgkx dA and f x*dA,
so there is in £luid mechanics a first moment defining the mean A
velocity Um = (l/A)égdA, with higher momenﬁs éy?dA and ég’dA depending
on the velocity distribution across the section A. The velocity at

any point is U = Um + 8U where O6U is the total deviation from the mean

velocity Um' Equation (B.3) expands to

AU *a = [U>da + 3fu ?6uda + 3[U_(du)*da + [(8U)°da (B.4)
m . a0 3 I 3 O a ,

By definition of a mean value, ISUdA = 0, leading to

A » :
AU °a = U faa + 30 [(SU)?dA + [(8U)’an (B.5)
A A A
ox
3 < 1
@ = 1+ =5 [(Su)*an + o—5 [(su)’aa (B.6) -
m A m A

If 68U is small, f(GU)’dA is negligible compared to f(dU)sz and

Eg. (B.6) may be written as A
3 : .
o= 1+—— [(éU)?an = 1 + 3n (2)
AU
m A .
where (B.7)
n= —— [(60)7aa | )
AU * ,
m A

If the velocity distribution across section A is uniform,dU =0, and a=1.
IESU # O, then n > 0 and from Eq. (B.7a), o > 1. The veldcity distri-
bution coefficient, &, always exceeds unity. It should be remembered
that ¢ is the average energy line level for the whole flow. The

kinetic energy flux past a channel section per unit time is expressed

as

& = opgQu_?/2g - | (8.8)

where pg is the specific weight of fluid. - The total energy can be

written as

t

e, = 09Q (oU7/25 + Q) (5.9)
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An examination of current hydraulics text books where cpen channel
flow is detailed shows that there are large variations in the suggested
Qalues for a and B. For straight prismatic channels with steady turbulent
flow a- values approximately range between 1.03 and 1.10 and seldom exceed
1.15, and it is doubtful whether the precision attainable with channel
calculétions warrants their inclusion, particularly as the experimental
data on values of a are rather sparse and not always consistent (Henderson,
19686).. Low values of a apply to wide deep streams and high wvalues to
small sections (Selin, 1969). For complex cross—-sections, or close to
constrictions such as bridge piers and weirs, the values of o may be
much higher. In some cases the velocity head makes up only a minor

part of the total energy head and ¢ = 1 can then be used for practical

purposes.

B.3.2 Momentum Coefficient (Boussinesqg Coefficient)

The momentum coefficient B represents the effect of the non-
uniform velocity distribution at a cross-section on the momentum flux
of the flow. The rate of transfer of momentum thréugh an element
of area dA is equal to pUdQ; hence by an argument similar to that preced-

ing it can be deduced that the momentum correction ctoefficient is

fu 2an [ v ?an
A A
m m

The mean value of the pressure force plus the momentum of a cross-sectional

area (Fig. B.l) of flow per unit width is therefore given by
72 = Xpgd® + pRQU (B.11)

The coefficients a and B are never less than 1; they are both
equal to unity when the velocity is uniform across the section, and the
further the velocity departs from uniform the larger the coefficients
become. The form of Egs. (B.3) and (B.10) makes it clear that a is

more sensitive to velocity  variation than B, so that for a given channel

section, a > B.



B.4 FROUDE NUMBER

In open channel flow the ratio of a typical velocity.head to a
typical linear dimension of the flow is a measure of the extent to which
gravitational action influences the flow phenomenon - the larger its magni-
tude then the smaller the relative effect of gravity, and vice versa. A
flow parameter of this type often used is called the 'Froude number', and
the simplest and the most pertinent of its several alternative forms is
the following (Harrison, 1965 and White, Perkins, Barrison and Ackers,

1978)
Um
Fr = —m— (B-12)
Ygd/a '

Egq. (B.12) could be written as

Fr = «Exaumz/zg)/d : (B.13)

indicating that the Froude number is the square root;of twice the ratio

of velocity head to depth.
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B.5 HYDRAULIC JUMPS

The hydraulic jump is one of the most interesting phenomena
occurring in.the field of hydraulic engineering. It has been a matter
of interest and research for almost five centuries since it was first
described by Leonardo da Vinci (Rouse and Ince, 1857).  In general a
hydraulic jump constitutes the rapid transition from supercritical

to subcritical flow.

In civil engineering practice, it is common to form a jump
downstream of a hydraulic structﬁre, such as a spillway or sluice gate
vhere -elocities are high and if is necessary to dissipate some of the -
kinetic energy of the flow. ‘The turbulent characteristics of the jump
can be used either to mix chemicals or to aerate the water used in city
water supplies or recovered in sewage plant treatment. The hydraulic
Jump is not only an effective means of reducing t.ie mean flow enerqy, but
2lso a very efficient mechanism for restoring uniform conditions to tﬁe
flow. The characteristics of the hydraulic jump (conjugate depth ratio
and energv dissipation), its geometry (length and shape of the surface

roller), and location have been the subject of much experimental wvork.

B.5.1 Classical Hydraulic Jump

The hydraulic jﬁmp formed in a smooth, wide, and horizontal
rectangular channel is known as the classical jump. In the classical
Jump the water surface begins to rise quite abruptly at the beginning,
or toe, of the jump, which oscillates about a mean position, and con-
tinues to rise up until it reaches a section beyond which it is essen-
tially level. This section denotes the end of the jump. Chow (1959)
gives a very good summary of the results of some of the most important
investigations. Rouse, Siao and Nagaratnam (1959) investigated the
turbulence characteristics of the hydiaulic Jump in an air-flow model
using a hot-wire anemometer. They found that, except for Froude
numbers well below 2, the hydraulic jump presents a ‘'breaking front'
(the roller) which is responsible for air entrainment in the jump and
formation of turbulence and hence the dissipation of energy. At the
juncture between the oncoming stream and the return flow of the roller

of the jump there is a pronounced velocity gradient, and the resulting



shear gives rise to a rapid generation of turbulence (Flares, 1954

and Rouse et al., 1959). For Froude numbers below 2 an 'undular hydraulic
jump' occurs,characterised by a succession of water surface undulations

(a train of unbroken standing waves) involving a negligible loss of.

energy in the jump (Chow, 1959 and Rouse et al., 1959).

The classical jump, in spite of its complex appearanée which
can be accompanied by violen; turbulence, eddying, surface undulations,
and air entrainment with consequential head loss, may be successfully
analysed by application of the impulse-momentum principle. The analysis
of a two-dimensional classical hydraulic jump in a horizoqtal smooth
channel is usually achieved bf making the aésumption that all boundary
friction losses are negligible and that the turbuient veiocity fluctua-’
tions at the beginning and end are negligible. Also it is assumed that
the pressure distributions immediately before and after the jump are
hydrostatic. With these assumptions and by the application of the one~
dimensional momentum principle in conjunction with the continuity equa-

tion, it may be written that

Fig. B.2 Definition sketch of hydraulic jump

pgd,*/2 - pgd,?/2 = pq(8,U -8 U ) ' (B.14)
where

d1 = depth of flow before the jump

d2 = depth of flow after the jump

TP = mass density

g = acceleration due to gravity

q = discharge per unit width

31 = momentum coefficient of flow before the jump

82 = momentum coefficient of flow after the jump

U~ velocity of flow before the jump

U = velocity of flow after the jump

the subscripts 1 and 2 refer to the sections before and after the jump
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respectively (Fig. B.2). However, if the velocity distribution at the
toe 6f the jump is assumed to bé similar to that at the end, a single
value of B can be used for both sections. In this case, if the Froude
number of the.floﬁ pteceding the jump (supercritical Froude number) is
defined as _

Fr, = U,/v%d; (B.15)

Eg. (B.14) can be written in the following form

a,/a, = %[+ 8errd)? - 1] (B.16)

The.two depths d1 and d2 are known as conjugate depths. When the velocity
distribution is assumed to be uniform i.e.B = 1, Eg. (B.16) reduces to
the form given in the standard hydraulic text books andis known as the -

Belanger momentum equation.

Since the hydrdulic jump is a steady phenomenon (of course,
in the mean), the flow oufside the roller must supply energy to the
roller at precisely the same rate at which the energy in the roller is
decaying. It is assumed that the roller accounts for all the loss of
ehergy in the jump, and this is approximately the case (Rouse et al.,
1959), the rate at which energy is decaying in the roller must be precisely
the difference in energy fluxes of the upstream and downstream flows.
Several definitions of the jump Iength have been proposed; two of the most.
comronly used are, the distance from the toe of the jump to the end of
the.roller, and the distance fromlthe toe of the jump to the point where
the tail~water depth is reached.

B.5.1.1 Position Sensitivity of & Classical Bydraulic Jump

The location of the hydraulic jump is known to be sensitive to
changes in tajlwater elevation. This fact diminishes from the value of
the jump as an energy diss;patdrg’ Early significant research into this
problem was undertaken by Bradley and Peterka (1957) who investigated the
effect of a tailwater change on the position of the toe in the stilling
basins designed by using the standard US Bureau of Reclamation specifica-
tions. Wilson (1965) defined a property of the flow through a hydrzulic
jump and called it the 'position sensitivity'. It was defined as the
rate of displacement of the toe of the jump along the channel with respect

to changes in tailwater elevation.
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On the basis of this definition further work has been carried
out by Wilson (1967) and subsequently by Wilson and Turner (1972) to
show how_the éensitiyity is dependent upon the Froude number, boundary
roughness and the channel bed slope. It.has been established that the
jump becomes less sensitive to tailwater change if the Froude number is
increased and if the chamnel bed slope is increased. For obvious prac-
tical reasons, a low value of jump sensitivity is desirable. In crder

to achieve this state, the Froude number should be as large as is possiblé.

B.5.1.2 Energy Loss in a Classical Hydraulic Jump

The loss of energy in a jump is equal to the difference in the
specific energies before and after the jump. If the energy coefficient,

o ,and the momentum coefficient, 8, are assumed to be unity, the theoreti-

cal loss in the hydraulic jump, eL. given by (Fig.‘B.Z)
2 lz 3

e [(1 + 8px 2)° - 3]

L _ 1 1
= = 3 ” (a)

“1 (2¢Fx,?) [(1+8F2Y) *-1]

(B.17)
- 3
e = ifg_iil_ (b)
L 4d1a2

in which & is the specific energy of the flow before the jump.
Equation (B.17a), which is the ratio of the energy dissipated in the
jump to the total energy at the beginning of the Jjump, is known‘as the
‘efficiency' of the hydraulic jump. The depth ratio dz/dl' is con-
sidered to be a measure of the 'strength' of the jump (Henderson, 1966);

by Eq. (B.17a), Fr.? is also a measure of this property. The cubic

1
term in Eg. (B.17b) shows that the energy loss increases very sharply as
the strength of the jump increases. From Eg. (B.17a) it can be found

that for a supercritical number Frl of 20 the energy loss is 0.8661.

The velocity distribution downstream of a hydraulic jump is
generally quite non-uniform and the high velocity filaments are concen-
trated near the bed of the channel. As such, the energy and the momen-
tum coefficients are far from unity and hence the actual energy loss is
smaller than the theoretiéal energy loss 61 expressed by Eg. (B.l?b)
(Hartung and Csallner, 19267). Garg and Shamma (1971) have shown that
the energy loss for a jump having Fr less than.4 was significantly smaller
than the theoretical value obtained from Eq. (B.17b). They found that

the percentage deviation increased with a decrease in the Froude number.
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B.5.1.3 Classification of Classical Hydéraulic Jumps

For a supercritical stream discharging from a slot, if a 'normal
hydraulic'jump‘ (2lso known as the free bydfaulic jump) is to be formed
at the efflux section where the depth is d1 and the Froude number is Erl,
(the energy coefficient o and the momentum coefficient B are assumed to.
be unity at the efflux section), the tailwater depth dt.should-be equal
to the sub?ritical sequent depth d2 Given by Eg. (B.18). If dt is less
than d2, the jump is swept downstream and is known as a ‘'repelled jump'.
If, however, dt is greater than d2, the jump becomes submerged or &rowned.
This is known as a 'submerged hydraulic jump', or drowned jump ‘or simply

the subﬁe:ged Jjump.

B.5.2 Forced Hydraulic Jumps

The control of a hydraulic jump so that supercritical flow does
not occur outside the limits of a stilling basin and thereby scouf the
natural channel floor is extremely important. Effective control of a .
hydraulic jump may be achieved by a submerged cross-jet (Kao, 1971), a
gradual (Arbhabhirama and Abella, 1971) or an abrupt expansion in the

. chammel cross-section (Rajaratnam and Subramanva, 1968).

An efficient method of controlling the formation of a jump is
to use either two-dimensional baffles known as 'sills' (baffle walls)

Submerged —
hydraulic free hydraulicI

Jump
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Fig. B.3 Free, repelled and svbmerged jumps



or three-dimensional baffles (baffle blocks, baffle piers',also knowvn as
friction blocks) on the apron or simply by depressing or abrupt rising
of the apron itself (with or without a subcritical tailwater).  Such a

jump which is forcibly formed is defined as the forced hydraulic jump.

The forced hydraulic jump, which is a basic design element of the well-

known hydraulic jump-type stilling basins has characteristics quite

different from those of a classical free hydraulic jump.

_:/,,::::r

—>d;
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(a) Jump formation at abrupt drop

......................................
......................................

(c) Jump formation at an abrupt rise

Fig. B.4

The control of hydraulic jump by sills is useful if the down-
stream depth is émaller than the sequent depth for a normal jump. If
the downstream depth is larger than the sequent depth for a normal jump,
a drop in the channel floor must be used in order to ensure that a jump
occurs. It is generally known that an abrupt drop in the bed of a

rectangular channel stabilizes a hydraulic jump in the vicinity of the

drop for a wide range of the tailwater depth (Rajaratnam and Ortiz, 1977).
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A large amount of experimental information exists on forced
hydraulic jumps, but the first attempt to study them appears to have
been made by Forster and Skrinde (1950). They studied the forced jump
created by a sharp-crested baffle wall and also that created by an abrupt
rise in the floor of the channel. Interesting experiments (Weavexy, 1950)
have shown that the force exerted on a baffle wall in the jump decreases
as the wall is moved away from the toe, reaching a minimal value when it
is near the end of the roller; it then increases to assume a constant value
for any further movement of the baffle. This study was followed by those
of Harleman (1955) and Bradley and Peterka(1957). Rand{1965) who introduced an (
interesting method of analysis with a view to generalizing the stilling
basin design. Rouse, Bhoota and Hsu (1951) and later Moore and Morgan
{1959) studied the formation of a jump at an abrupt drop. Careful
studies were also made by McCorquodzl and Regts (1968). The next
attempts were made by Rajaratnam (1964) and subsequently by Rajeratnam and
Murahari (1971) who expressed the force exerted on the baffle piers or
blocks by application of the well-known drag eguation. By introducing
this drag eguation into the momentum equation, they estzblished a2 general
method of analysis for a number of cases. Supercritical flow cver a
square section sill without any tailwater was investigated experimentally
by Karki (1976) and vexry recently Tyagi, Prende and Mittal (1978) reported

interesting results from experiments on baffle walls in a hydraulic jump.

B.5.3 Submerged Hydraulic Jump

If the tail-water depth is greater than the subcritical sequent
depth d2 given by the Eg. (B.16), then the tailwater advances over the
jump, and a submerged jump is formed. Submerged jumps occur most commonly
below barrages, weirs, canal head sluices and, in some cases when the tail-
water depths are very large, below spillways and river outlets. It has
not been conclusively established whether it is more desirable to have
the submerged jump as an energy dissipation. It is generally believed
that as the submergence increases the high velocity stream or jet may not
mix as intensively as in. the case of the free hydraulic jump and, as such,

the energy dissipation might be comparatively less (Rajaratnam and Rao,
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1963) . Furthermore, it is feared that the high velocity jet may travel
along the bed, without much retardation over considerable distances, there-
by causing scour (Rajaratnam, 1965). Therefore, the submerged jump should
not oxdinarily be preferred to the free jump for energy dissipation pur-
poses. Liu (1949) -and Henry (1950) studied extensively the backward

flow in the case of a submerged hydraulic jump. Submerged Jjumps below

spillways were studied extensively by Stepanov (1958).

B.5.4 Spatial Hydraulic Jump

A Lydraulic jump occurs under spatial conditions when a super-—
critical stream, confined by parallel boundaries, encounters a wider and
deeper tail-water level. Examples of spatial jumps occur when the water
flow is only part of the weir crest or is only through one of the many
adjoining gate openings. At the outlet.of a culvert or bottom outlet

of a dam leading to wider watex, the characteristic side rollers (Fig. B.5)

Fig. B.5 Hydraulic jump in an expansion

are visible and require a three-dipensional consideration. Also when

the given tail-water depth is so small that a classical hydraulic jump,
even ajided by appartenances, is no longer able to form, then a good way
of guaranteeing the necessary energy dissipation is by means of a spatial
hydraulic jump. Such jumps, which are sfrongly influenced by the forma-
tion of side eddies, were studied by Unny (1961) and Herbrand (1973) .

Both of these researchers found that a jump in the region of a lateral
expansion requires a shallower stilling basin that the classical hydraulic

jump with the same inflow conditions.



CHAPTER C

THEORETICAL ANALYSIS

OF RANDOM WAVES
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' C.1 GENERAL

Spectral analysis is basically a very useful and convenieﬁt
tool which aids the design of structures which are subjected to time
-dependent stochastic loads such as those exerted by wind-generated
‘water surface waves, or random waves existing near a retaining wall which
has been discussed earlier. It is very important to be able to éredict
accurately wave conditions in order to achieve a successful retaining wall

design.

From the work done before 1939 by scientists such as Munk and
Sverdrup (1947), the well-known significant wave method was developed.
This method is still used by many practical engineers.at the moment ané
consists of describiig a complex wave pattern using simple terms such as
significant wave height and wave period. However this procedure was
soon found to be unsatisfactory. The description of complex wave con-
ditions by two parameters and the extrapolation of simplifiea wava model
test results to field situations was gradually disfavoured and the need

for new and more sophisticated approaches was felt.

By the early 1960's, a movement to look at waves in more detail
was underwvay. Studies such as those by Blackman and Tuckey (1958),
- Funke (1¢60), Kinsman (1965) and Wiegel (1964) established new technicues
to deal with complex waves of random nature by looking at the structure

of the waves e.g. wave energy spectrum etc.

The variation in water surface elevation at three different
positions along a retaining wall was recorded simultaneously. -The time
series records were analysed using the new techniques of Fast Fourier
Transform and smoothing rather than the costly traditional methods such
as the one based on autocovariance method. Approvriate recommendations
and guides are given for duration of wave sampling, wave sampling rate
and digitisation procedure of the wave record. The relationships as they
are presented in this chapter and in the implemented computer programme
are given a ceneral form and can be used not only for waves adjacent to

the retaining wall in this research but also for analysis of any similar

‘random data.

F.F.T. permits the calculation of the Fourier Transform of a
1oﬂg series of data in a reascnably short computing time. In addition to a
review of Fourier Transforms, a number of detailed points arising out of the
application cf F.F.T. are discussed in this chapter. However, before

deriving the theory, some basic properties of the data must be considered.
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Cc.2 BASIC DESCRIPTIONS OF PHYSICAL DATA

Any observed data representing a phySical‘phenomenon can be
broadly classified as being either deterministic or nondeterministic.
Deterministic data is that data that can be described by an explicit ‘
mathematical relationship. There are many physical phenomeha in prac-
tice which generate data that can be represented reasonebly accurately
by explicit mathematical relationships.  For example, the motion of a
satellite which is in orbit about the Earth, the temperature of water as
heat is applied, the motion_of a rigid body which is suspended from a
fixed foundation by a linear spring, are all basically deterministic.
However, there are many other physical phenomena which produce data that
is not deterministic. = For example, the height of waves in a confused
sea }epresents data which cannot be described by an explicit mathematical
relationship. There is no way of predicting an exact value at some
future instant of time. This data is random (stochastic) in character
and must be described in terms of probability statements and statistical

averages rather than by explicit equations.

The classification of physical data as being either determinis-
tic or random is debatable in many cases. For exemple, it may be argued
that there is no physical data in actual practice that can be truly deter-—
ministic since there is always a possibility that some unforeseen event
in the future might influence the phenomenon preducing data in a manner
which was not originally considered. Conversely, it may be argued that
there is no physical data encountered in practice that is truly random
since exact mathematical descriptions may be possible if therewas suffi-
cient knowledge of the basic mechanisms of the phenomenon producing the
data. In practical terms, the decision as to whether or not physical
data is deterministic or random is usually based upon the ability to
reproduce the data by controlled experiments.. If an experiment producing
specific data of interest can be repeated many times and with identical
results (within the limits of experimental error), then the data can
generally be considered deterministic. If an experiment cannot be
designed which will produce identical results when the experiment is

repeated, then the data must usually be considered rancdom in nature.

It is easy to see that the deterministic process may be con-
siderxed an offshoot of stochastic processes. This can be explained most
easily by a diagram, Fig. C.1. All four processes mzy be considered
stochastic, but the degree of randomness in yj}(t);) far ocutweighs the
deterministic element of the process, whereas in y) (ty) the degree of
randomness (random element) of the process is zero, yy(ty) is therefore

deterministic.



Fig.C.1 Stochastic processes*

* The above ijillustration could be assumed as 4 simultaneous ti
records tazken from a process

me history
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A great deal of argument has taken place about the nomenclature
in stochastic processes. In this thesis the terms stochastic, random
and probabilistic will mean the same (mathematically correct). Therefore
a stochastic (random or probabilistic)process will be considered to be
a procesé which has both deterministic and random (stochastic or probhabi-

listic) elements. The two limiting cases, will be called completely

random and deterministic.

C.2.1 Classifications of Deterministic Data

Data representing deterministic processes can be categorized
as being either periodic or non-periodic. Periodic means that there is

& nuxber T, called the period of the function such that
y(t) = y(t+ T) (c.1)

for all t. The function‘between t and (t+T) can be of any shape. If

two functions yj;(t) and y,(t), both have a period T, then the function

ayy (t) + byp(t) (a and b are constants) is also periodic with T. Periodic
data can be further categorized as being either sinusoidal or non-sinusoidal
{(complex periodic). Non-periodic data can ke further categorized as being>
either 'almost-periodic' or transient. These various classifications

for deterministic data are schematically illustrated in Fig. C.2. of
course, any combination of these forms may also occur. For the purposes

of this review, each of these types of deterministic data along with

physical examples will be briefly discussed.

Deterministic
Periodic ' Non-periodic
Sinusoidal Comgle% Alm?st- Transient
periodic periodic

Fig. C.2 Classifications for deterministic data
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c.2.1.1 Sinusoidal Pericdic Data

Sinusoidal data is that type of periodic data which can be

defined mathematically by a time-varying function of the form

y({t) = Ysin(mot.+ 60) (C.2)
where '

y (t) = instantaneous value of the dependent variable at time t

Y = amplitude

v, = angular frequency

t = independent variable
6

° = initial phase angle with respect to time origin.

The sinusoidal time history described by Eq. (C.2) is usually referred
to as a 'sine wave'. Equation (C.2) with & suitable choice of time

origin may be rewritten as
yv(t) = Ysin(mot) ‘ (c.3)

Equation (C.3) can be described by a time history plot or by an amplitude-

frequency plot as illustrated in Fig. C.3.

y(t)

Amplitude
A

Frequency

Fig. C.3 Time history and amplitude-freguency diagram for a

sinusoidal data

The time interval required for one complete fluctuation in a cycle of
sinusoidal data is called the period T or wavelength. The frequency fo'

defined as fo = mo/2w and period T are related by T = 1/fo’ since

. _ . 1
y (t) Y51n[2ﬂfo(t+T)] = Y51n[217fo(t+f ) ]

© (C.4)

y(t) Ysin(Zﬂfot)

Purely sinusoidal mction is very difficult to find in nature.
Examples that are close to sinusoidal rotion are a weigth vibrating on

a spring and a wave generator driven by an eccentric crank.



c.2.1.2 Complex Periodic Data

Complex data is that type of periodic data which can be defined
mathematically by a time-varying function whose waveform repeats itself

at regular intervals such that

y(t) = y{tinT) . {c.5)
' ’ n=1,2,3, ... .
where T is the period in which the pattern‘r.epeats itself. The number
of cycles per unit time is called the fundamental freguency flf "a special

case for complex periodic datais clearly sinusoidal data where £ = fo'

The mathematical expression describing complex periodic phenomena
is

y{t) Y1sin(2nfit+8]) + Ypsin(4mfit+03) + ...  (C.6)

I
"
o

ox
]

+ nZlYnsin(ernflt +8) (c.n

Il
2]

v {t)

Except in a few cases, complex periodic data may be expanded

into a Fourier series according to the following formula

a @
y{t) = -EO— + z [ancoS(Z:nflt) + bnsin(ZTrnflt)] (C.8)
n=1
. 1
vwhere £, = T
, T :
a =3 f y (t)cos (2mnf; t) dt (C.9)
o) ! n=20,1,2, ...
2 T |
b, =7 f y(t)sin(2mnf;t)de (C.10)
o -n=1,2,3, ...

From Eg. (C.7) it may be seen that

Y = (a? + bz);z 6. = tan 170
n n n n

(C.11)
n

In words, Eg. (C.7) states that complex periodic data consists of a

static component, Yo' and an infinite number of sinusoidal components,

called harmonics, which have amplitudes Ynandphasesﬁn,The frecquencies of

the harmonic components are all integral multiples of f . .
. 1
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When analyzing periodic data in practice, the phase angles 6p
are often ignored. The spectrum is called 'discrete' since the amplitudes

- are present only at discrete corresponding values of frequency.

Amplitude

Y
Ly o Y6
(o]
N IYS
O’ 9. ®.

£y 2fy 3f1 4f 5f; 6f; 7f1 8f, 9f,

» Freguency

Fig. C.4 Amplituae—frequency diagram for a complex periodic data

Physical phehomena which produce coﬁplex periodic data are far
more common than those which produce simple sinusoidal data since few
phenomena in nature are purely sinusoidal with no harmonies. Thus any
data that is often considered sinusoidal is complex periodic in that.
higher harmonics are present (Fig. C.1). A.C. current, for instance,

often considered sinusoidal, contains higher harmonics.
g

c.2.1.3 Almost-Periodic Data

In the previous section, it was noted that periodic data can
generally be reduced to a series of sine waves with commensurately relaﬁed
frequencies. Conversely, the data formed by summing two or more commen -
surately related sine waves will be periodic. However, the data formed
by summing two or more since waves with arbitrary f;equencies will generally

not be periodic.

Almost periodic data differ from complex periodic data in that
the frequencies of the various components of the data are not integral
multiples of each other. This means that the period in which the record

repeats itself is infinite.

Based upon these discussions, almost-periodic data is that type
of non-periodic data which can be defined mathematically by a time-varying
function of the form

[=<]

y(t) = n£1 Y sin(2rf t + 6 ) (c.12)

where fn/fm # rational number in all cases.
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An important property of almost-periodic data is the following,
if the phase angles 8 are ignored, Eq. (C.12) can be characterized by
a discrete amplitude frequency spectrum similar to that for complex
periodic data. The only difference is that the frequencies of the com-

ponents are not related by ratiénal numbers, as illustrated in Fig. C.5.

Amplitude

A

T¥2 T Yy
Y
1 Y3 : Y6
Y5

O® o ? & '

] £ f2 f3 £, fs fe Freguency

Fig. C.5 Amplitude-frequency diagram for an almost-periodic data

Any motion that is the result of a number of independent,
unrelated periodic vibrations is almost periodic. Thus the.motion of
a weight suspended by 6 springs of arbitrary size and stiffness could be
represented by an amplitude-frequency as illustrated in Fig. C.5. The
vibration of a bridge subjected to vehicular traffic of all types is

another example.

c.2.1.4 Transient Nop-perjiodic Data

This category includes all deterministic data not yet discussed;
~that is phenomena which are transient between one stationary state and-
another and can be described by some suiteble time-varying function.

Three simple examples of transient data are shown in Fig. C.6.

Examples of physical phenomenawhich produce transient data are
-numerous and diverse. For example, the data in Fig. C.6(a) could repre-
sent temperature of water in a kettle (relative to room temperature) after
the flame is turned off. The data in Fig. C.6(b) might represent the
free vibration of a damped mechanical system after an excitation force
is ceased. The data in Fig. C.6(c) could represent the sudden closure

of a valve or a switch at time t = c.



57 .
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- Fig. C.6 Illustrations of some transient data and their corresponding

amplitude - freguency plots



It is obvious that in thesetransient data theie are no discrete
frequencies present and therefore the amplitude-frequency diagram will A
not be discrete but continuous, throughcut all values of £. In parallel
to the Fourier series analysis performed on the complex periodic data,
it is possible to use a Fourier integral (Fourier integral will be dis-
cussed in detail in Section C.4) to arrive at an amplitude frequency dia-
gram for transient conditions

—12Trftd

00
gf) = [ye t . (C.13)

The Fourier spectrum g(f) 1s generally a complex number which can be

expressed in complex polar notation as

g8 = |geg)|e 8E) , | (c.14)

Here, !g(f)l is the magnitude of g(£f) and 8(f) is the argument. The
amplitude-frequency plot for the three transient time histories are

presented in Fig. C.6 (in terms of the magnitude [g(f)l).

¢.2.2 Classifications of Random (Stochastic or Probabilistic) Data

' As discussed earlier, data which represents random physical
phenomenon cannot be described by an explicit mathematical relationship
because each observation of the phenomenon will be unique. In other
words, any given obsexrvation will represent only one of many possible
results which might have occurred. An example is when the output voltage
from a thermal noise generator is recorded as a function of time. A
specific voltage—-time history record will be obtained, as shown in Fig. C.7.°
However, if a second thermal noise generator, of identical construction
and assembly, is operated simultaneously a different voltage-time history
record will result.  In fact every_thermal noise generator which might
be constructed would produce a different voltage-time history record, as
illustrated in Fig. C.7. .Hence the voltage-time history for any generator

is merely one example of an infinitely large mumber of time histories

which might have occurred.



Voltage

Time

Fig. C.7 Sample records of thermal noise generator outputs

A single time history representing a random phencmenon is
called a sample function (or a sample record when observed over a finite
time interval). The collection of all possible semple functions which
the random phenomenon might have produced is called a random process or a
stochastic process. Hence a sample record of data for a random physical
phencmenon may be thought of as one physical realization of a random pro-

cess. The total collection of the records of a process is called an

ensemble.

Random

Non-stationary

Stationary
Special
classifications
Ergodic Non-ergodic of non-stationarity

Fig. C.8 Classifications cf random data
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A random process may be categorized as being either stationary
or non-stationary. Stationary random processes may be further categorizea
as being either ergodic or non-ergodic. Non-stationary random processes
may be further categorized in temms of specific types of non-stationary
properties. These various classifications for rendom processes are
schematically illustrated in Fig. C.8. The meaﬁing and physical signifi-
cance of these various types of random processes will now be discussed

in broad texrms.

Considering the collection of sample functions (the ensemble)
which forms the random process illustrated in Fig. C.92. The following

terms are commonly used in connection with stochastic processes.

C.2.2.1 Sample Mean

The mean value of the dependent variable over the sample func-

tion is defined as

T .
.1
by, = Ely, (8] = 11m¥£yk(t)dt . | (C.15)
k=1,2,3, ceer N

Equation (C.15) gives the sample mean of y(t) over the kth sample. el 1

is the short form for 'expected value' or mean value.

c.2.2.2 Sample Autocorrelation

The correlation of the dependent variable at a point t with the

same variable at_another point some time T later is defined as

Ryk(t,r) = E[y, (t) .yk(tﬁ)]
(C.18)
1 T
Ry, (t/T) = égg;iyk(t) -y (BT at

K=1,2, ...,
Eq. (C-16) expresses the autocorrelation (correlation of a record to

itself) of the kth sample for a particular time lag T.

c.2.2.3 Ensemble Mean

The mean value (first moment) of the random process at some
time t; can be computed by taking the instantaneous value of each sample-
function of the ensemble at time t);, summing the values, and dividing by
the number of sample functions. That is, for the random process {y(t)},
where the symbol { } is used to denote an ensemble of sample functions,

the mean value uy(tl) is given by



Fig. C.9

Ensemble of 1 sample functions of a stochastic process
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_ | -
u (t)) = Ely(t;)] = lim — ) vy, (t;) _ (C.17)

c.2.2.4 Ensemble Autocorrelation

In a similar manner, the autocorrelation function (often
abbreviated as ac.f.) between the values of the random process at two
different times can be computed by taking the ensemble average of the
product of‘instantaneous values twice at t; and (ti+T). That is, the

autocorrelation function Ry(tl,r)

Ry(tl(T) = E[y, (f)) .y, (£1+0] | (a)

| L on (c.18)
R (t},T) = 1lim -— 7y, (£1).y, (t1+1) (b)

¥ Row Mot ¥ *

where the final summation assumes each sample functicn is equally likely.

c.2.2.5 Stationary Random Processes

For the general case where uy(tl) and Ry(tl,T) defined in Egs
(C.17) and (C.18) vary as time t;} varies, the random process {y(t)} is
said to be non-staticnary. For the case vhere uy(tl) and Ry(tl,r) do
not vary with time, the random process {y(t)} is said to be weakly stationary
or stationary in the wide sense. For weakly stationary random processes,
the mean value is a constant and the autocorfelation function is dependent
- only upon the time displacement T. That is, uy(tl) = uy and Ry(tl,r)
= Ry(‘r).

An infinite collection of higher-order moments and joint moments
for the random process {y(t)} could also be computed. For the special
case where all possible moments and joint moments are time invariant,
the randem process {y(t)} is said to be strongly stationary or stationary
in the strict sense. However, in practice, verification of weak stationa-

rity will justify an assumption of strong stationarity.

A time wave record from the sea, where there is neither the
effect of wind acceleration nor the presence of tide (or tide effect has
been artificially removed), is assumed to be stationary. If a tidal
fluctuation is left in the record, the ensemble mean and autocorrelation

would change as t changes and the record would therefore be non-stationary.
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c.2.2.6 Ergodic Random Processes

. In the previous section the properties of a random process and
how they can be determined by computing ensemble averages at specific
instants of time was discussed. In most cases, however, it is also possible
to describe the properties of a stationarv random process by computing
time-averages over specific sample functions in the ensemble. For example,
considering the kth sample function for the random process illustrated
in Fig. C.9, the mean value qu and the autocorrelation function Ryk(t,r)

for the kth sample function are given by

T
1
uyk = i_‘i_: El' £ yk(t) dt (a)
- (C.19)
1
R_(t,7) = lim = [ yp(t)y, (t+7)dt (b)
Yk Tosco T 5 k

If the random process {y(t)} is stationary, and Py and Ryk(t,r) defined
in Eq. (C.19) do not differ when computed over different sample functions,
the random process is said to be ergodic. For ergodic random processes,
the time-averaged mean value and autoccrrelation function. (as well as all
other time-averaged éroperties) are equal to the correspondihg ensemble
averaged value. That is, qu = uy and Ryk(t,r) = Ry(r). It is
important to note that only stationary random processes can be ergodic.
Ergodic random processes are clearly an important class of ran-
dom processes since all properties of ergodic random processes can be '
determined by performing time-averages over a single sample function, in
this way it can be seen that this is a very strict condition. It means
that if a wave recorder is positioned at a certain point in a lake
then the mean of its record and the autocorrelations must be the same
as those for all other similar wave records taken in all other similar
lakes at similar points and under similar éonditions, before the process
can be called ergodic. Fortunately this is approximately true in nature
and therefore all wave records are assumed to be part of ergodic proces-—
ses and in most cases each wave characteristic can be measured properly,

from a single observed time history record, although ergodicity cannot

be proven.



C.2.2.7 Non-stationary Random Processes

Non-stationaxry random processeé include all random processes
which do not meet the reqﬁirement for stationarity defined in Section
Cc.2.2.5. Unless further restrictions are imposed, the properties of
a non-stationary random process are generally time-varying functions
which can only be determined by performing instantansous averages over
the ensemble of sample functions forming the process. In actual prac-
tiée, it is often not feasible to obtain a sufficient number of sample
records to permit the accurate measurement of properties by ensemble
averaging. This fact has tended to impede the development of practi-

-cal techniques for measuring and analyzing non-stationary random data.

In many cases, the non-stationary random’data produced by

- actual physical phenomena can be classified into special categories of
non-stationarity which simplify the measurement and analysis problem.
For example, some types of random data might be described by a non-
stationary random process {y(t)} where each sample function is given by
y(t) = A(B)Q{t). Here, Q(t) is a sample function from a stationary
random process {Q(t)} and A(t) is a deterministic multiplication factor.

If non-stationary random data fit a specific model of this type, ensemble
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averaging is not needed to describe satisfactorily the data. The various

desired properties can be estimated from a single sample record, as is

true for erogidc stationary data.

C.2.2.8. Self-stationary Random Processes

The concept of staticnarity as defined in Section 2.2.5, relates.

to the ensemble averaged properties of a random pfocess. However, in
actual practice, data in the form of individual time history recoxds
for a random phenomenon are frequently referred to as being stationary
or non-stationary. A slightly different concept of stationarity is
involved here. wWhen a single time history record is referred to as
being étationary, it generally means that the properties computed over

short time intervals do not vary 'significantly' from one interval to
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the next. The word significantly is used here to denote that observed
variations are greater than would be expected, owing to normal statisti-
cal sampling variations. Hence the single sample iecord is stationary
within itself. This concept of stationarity is sometimes called self--

staeticnarity to avoid confusion with the classical definition.

To clarify the idea of self-stationarity, a single sample
record yk(t) cbtained from che kth sample function (Fig. C.9) of a random
process {y(t)} is considered where a mean value and autocorrelation
function are obtained by time averaging over a shéxt interval T with a

starting time of tl‘as follows

t1+T )
My, = T f yk(t)dt (a)

" t+T » (c-20)
R (t,7) = = } v, (£)y, (t+1)dt (b) |
Yy T t1 k'7"7k

For the general case where the sample properties defined in Egq. (C-20)

vary significantly as the starting time t; varies, the individual sample
record is said to be self-nonstationary. For the special cése where

the sample properties defined in Eg. (C.20) do not vary significantly

as the starting time ty varies, the sample record is said to be weakly
self-stationary. If this requirement is met for all higher order moments
and joint moments, the sample record is said to be strongly self-stationary.
It is important to note here that a sample record obtained from an

ergodic random process will be self-stationary.



66

C.3 BASIC DESCRIPTIVE PROPERTIES OF RANDOM DATA

Various descriptive properties for stationary random data will
now be defined. It is assumed that the data is ergodic, so that the
properties of the data can be determined from time-averages of individual

sample records.

c.3.1 Mean Square Values (Mean Values and Variances)

The general intensity of any set of random data may be descriked
in rudimentary terms by a mean~squere value, which is simply the average
. of the sguared values of the time history. In equation form, the mean

square value QYZ for a sample time history record y(t) is given by

2 = 1lim % f t)ét (c.21)
¥ Teco o
The positive sguare root of the mean square value is called the root mean

square {(often abbreviated as r.m.s.).

It.is often desirable to think of physical data in terms of
a combination of a satic or time-invariant component and a dynamic or
fluctuafing component. The static ccmponent may be described by a mean
value which is simply the average of all values. In equation form, the

mean value uy is given by

T
| ywmat (c.22)
(@]

1=
It
(]
B
B
Hi=

The dvnamic component may be described by a variance which is simply the
. _ 5
mean square value about the mean. In egquation form, the variance Gy

is given by

a =

1
lim = f [y(t) = u_)2%at (C.23)
Y e T o b4

The positive sgunare root of the variance is called the standard deviation.

C.3.2 Probabilitvy Density Functions

The probability density function (often abbreviated as p.d.f.)pro-

vides information concerning the propertieé of the data in the amplitude domzin.

For a continuous random data,the probability density function describes the
probability that the data will assume a value within some defined range

at any instant of time. Considering the sample time-history record y(t)
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as illustrated in Fig. c.10. The probability that y(t} assumes a value
betweeﬁ v an@ {y+Ay) may be obtained by taking the ratio TO/T, where
To = z Atn and is the total length of time for which y(t) falls insice
the rgiée (y. y+4dy) during an observation time T. This ratio will

approach an exact probability description as T approaches infinity. 1In

equation form N
At
To nil n ;
Prob [y < y(t) £y + 4t] = Llim T = lim — (c.24)
T T

For small Ay, an approximation to the-probability density function is

Probly < ¥(t) £y + Ay] = p(y)dy S . (C.25)
y(t)
1 o ot gl Aty ylbtallil bty ply)
| 1 1) H I ' A
/AN A |
Y'H:‘-Y ' ' ] I l by

L]
I
o~
o>
rf
3
r— — —— — —

N
© n=1
0 ;.
! P
{a) Probability measurement (b) probability
density function
Fig. C.10
' < < 1 n=
ply) = lim Pr°b[YAY(t)J+AY] = lim lim = 2 1A (C.26)
Ay+0 Y Ay=+0 T ¥

The probebility density function p(y) is always a real-valued, non-

negative function.

The probability that an instantaneous value of y(t) is less
than or equal to some value of y is defined by P(y), which is in turn
equal to the integral of the probability density function from minus
infinity to y. This function P(y) is known as the probability
distribution function, or cumulative probability distribution function,
and shéuld not be confused with the probability density function p(y).
Specifically v

Ply) = Prob[y(t) s y] = [ pE)cE (c.27)

: : ~c0



The distribution function P(v) is bounded by zefo and one, since the
probability of y(t) being less than - is clearly zero while the proba-~
bility of y(t) being less than += is unity (a certainty). The proba-~
bility that y(t) falls inside any range (y;.y2) is given by

) Ya..
P(yp) - Ply;) = Probfy; <y(t) sy2] = [piyay  (c.z8)
¥y
In terms of the probability density function p(y), the mean

value of y(t) is given by

-0

u, = [ vyptiay (C.29)

-

In words, the mean value is a weighted linear sum of y(t) over all values

of y. Similarly, the mean square valueis given by

40

xpy?— = f viply)éy (Cc.30).

-0
Hence the mean square value is a weighted linear sum of yz(t) over all
values of y.

c.3.2.1 Illustrations

To help clarify the practical significance of probability
density functions, it is convenient to consider seven examples of
time history records which might occur in practice: (a) constant
(b) square wave, {c) sawtooth wave, (d) sine wave, (e) sine wave plus
random noise, (£) narrow-band random noise, and (g) wide~band random
noise, Typical time history records for each of these examples are
presented in Fig. C.1il. In all cases, the mean value is assumed to

equal zero ( = Q) for convenience.
el v

It is important to note here that a sine wave is usually 
thought of as being deterministic since it can be described in detail
by the equation y(t) = ¥ sin(2nfot+6). However, a sine wave may also
be thought of as a sample function from a random process {viv)} =
{Ysin(2ﬁfot+6k)}, where the initial phase angle 8, for each sample
function yk(t) is a random variable. Such an interpretation is made

here to justify describing a sine wave in probabilistic terms.

A typical plot of a pmobability density function versus
instantaneous value [ply) versus y] for each of the last six illus-
trations of Fig. C.11 is presented in Fig. C.12. The last four examples
in this figure illustrate a definite trend with the probability density
plot changing pattern from thé sine wave case to the wide-band randon

noise case.
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(b) Square wave

(e) Sine wave plus random noise

y(t)

" A
[\f\ ﬂ ﬂ\jﬂ Unuﬁvﬂvf\v ol

(f) Narrow-band random noise

-

{g} wide-band random noise

Fig. €.11 Seven special time histories
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py)
infinite spike or Dirac delta A o lyl# Y- 2§§221§elipl§e or
function YIF e unction
oly)= (see :
B . Appendix I)
+%® lyl= ¥
[pwiay =1
-X o +Y

(a) Probability density function plot of a sguare wave

p(y) 1/2y) |v] g ¥

I EE

Y

<

-y o +Y

yrvyi-y*) |yl s ¥

lvl > ¥

> o

(c) Disch-shaped probability density function plot of a
sine wave

Y

0 ) Yy
(d) Probability density function plot of a sine wave plus

random noise
' ply)

gaussian distribution

(e) Bell-shaped probability density function plot of a
" narrow—-band random noise )

p (y)

(f) Bell-shaped probability density function plot of a
wide-band random noise

Fig. C.12 Probability density functions



c.3.2.2 Applicaticns

The principal application for a probzbility density function
measurement of phvsical data is to estazblish a probzbilistic descrip-
tion for the instantaneous values of the data. However, from Fig. C.12,
it is seen that the probability density function couwlé also be used to

distinguish between sinusoidal and rzndom data.

C.3.3 Sampling Thecry

Sempling theory is a study of the relaticnships between a
population and semples drawn from that population. It has great value
when used in many connections. For example it is useful in the
estimation of unknown population guantities (such as pogﬁlation mean,
variance, etc.); often called population parameters or more briefly
paremeters, from a knowledge of corresponding sample quantities (such
as sample mean, variance, etc.); often called sample statistics or

more briefly statistics.

Cc.3.3.1 Unbiased Estimates

One desirable property for an estimator is that cf unkiased-
ness. If the mean of the sampling distribution of a statistic equals
the corresponding population parameter, the statistic is called an
unbiased estimator of the parameter. In this thesis it is convenient
to denote the unknewn parameter by p and the estimator by ﬁ. ﬁ is an
unbiased estimator of p if E(l) = p, otherwise it is known as a
biased estimator. The corresponding values of such statistics are called

unbiased and biased estimates respectively.

p.d.f. p.d.£.
* unbiased A biased

| }

] |

| l

l |

| - )i .
* > + e 4
0] m ! °7 i H

Fig. C.13 Tvpes of estimators
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C.3.3.2 Consistent Estimates

A further desirable property of a good estimator is con-
csistency; roughly speaking, this signifies that the larger the sample
size n the closer the statistic will be to the true value. An

estimator, u, is said to be consistent if

E(ﬁ)-*u ‘as n > (a)
5 4 (c.31)
Var(ﬁ) +0 as n > @ (b)

property (C.Jla) holds for unbaised estimates,

C.3.4 Digitising of Continuous Data

The process of digitising consists of converting data into
discrete numbers. 'Among the variouvs types of sampling, the most
important one is the equispaced sampling which will be considered in
this context. In order to digitise a continucus record, a positive
quantity At called the sampling interval, is required. The constant
cquantity At is the time interval between sampled values of y(t). The
numbar of values sampled per unit time is called the sampling rate

and is ecual to 1/At.

v(t)

|

Fig. C.14 Equispace sampling of a continuous record

An illustration of equispaced sampling of continuous data is shown in
Fig. C.14. The continuous function y(t) is replaced, by the discrete

time series

y; = y[@-Dat], o 55y _ - ple.32)

The number of the data N is normally known as the sample size.
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c.3.4.1 Raw Data

When a continuous record is digitised, the collected data is

not arranged numerically and as such is called raw data.

C.3.4.2 oOrdered Array (Ranked Array)

‘ In array is an arrangemenf of raw data in éscending or descend-
ing order of magnitude. Such ranking enables a reader to perceive
several aspects of the data at a glance, such as the smallest number,
the largest number, the range, i.e.the difference between the largest and

the smallest number.

c.3.5 Calculation of the Mean Value

For a digitised time series of size N, the sample mean value

is given by

v, (C.33)

y =
1 1

2=
e~

i
where N is the number of data samples and y; are the data values. The

quantity §'calculated here is an unbiased estimate of the true mean

value .
“Y

C.3.6 Calculaticn of the Standard Deviation

The sample standard deviation for a digitsed time series of
size N is given by
N
1 —_
B =T (.34

The quantities s and s? calculated here are unbiased estimates of the

true standard deviation and variance, Uy and Uy’, respectively.

€.3.7  Coefficient of Dispersion

The standard deviation is expressed in the same units as the
mean, however it is more useful to measure the spread in relative terms
by dividing the sample standard deviation by the sample mean. This dimen-
sionless ratio is known as the coefficient of dispersion. If every y
observation in a set of data is multiplied by the same constant, the dis-

persion coefficient is unaffected.
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c.3.8 Skewness

Skewness is the degree of asymmetry of a probability density
function. If the probability density function of a distribution has a
longer 'tail‘ to the right of the central maximum than to the left, the.
distribution is said to be skewed to the right or to have positive skewness.
If the reverse is true it is said to be skewed to the left or to have
' negative skewness. The population skewness coefficient is defined as the
dimensionless ratio of the third central moment* to the second central moment

on the power 3/2,'orv
+
f e )*p(y)dy
v 4w Y
g = 3 . (C.35)

o
Y

where p(y)., “y' UY are respectively the probability density function, the
population mean and the population standard deviation. A distribution

is symmetrical (bell-shaped) about its mean if g is zero.

P(y)‘ o« : P (Y)A G p(y)A ©

f ply)dy=1 f p(y)dy=1 f p(y)dy=1
0 o 0

>Y0

. : K
(a) Skewed to the right (b) Symmetrgcal or (c) Skewed to the left
bell-shaped

Fig. C.15

For a digitised time series of size N, the unbiased estimate

of the skevmess coefficient is

N —
_Z (y;-¥)*/N

N? i=1 .
9 T " 1) (N-2) S° N>2 (C.36)

>

where s? is the sample variance.

If every observation in a set of data is multiplied by the

same constant or a constant.is added, the skewness coefficient is

unaffected.
*ITf Xy1Xgs-. X are the n values assumed by the variable x, the quantity
N
m = Z (Xj ~x) /N where ¥ is the arithmetic meaniscalled therth centralmoment.

3=1
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c.3.8 Kurtosis

Kurtosis is the degree of peakedness of a probability density
function and is usually taken relative to a normal distribution. The

population kurtosis coefficient is

+<X>
/ (y-p) *ply)ay
= = -3 (C.37)
T .
Y 9,

A prbbability density function having a relatively high péak such as the
curve of Fig. C.16 for which y > 0 is called leptokurtic. Those for
which v < 0 are called platykurtic and will be flat—topped.r The normal
distribution, (y = 0), which is not peaked or flat-topped is called

mescokurtic.

'y
<

p(y)
A 4o . +o
fp(y)dy =1 fp(y)dy =1

[
o

(2) Leptokurtic {(b) Platykurtic (c) Mesokurtic

For a digitised time series of size N, the estimate of the

kurtosis coefficient is "
~ N3 i=1
= -3 : Cc.38
Y (N-1) (N=-2) (N-3) s¥ ( )
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c.3.10 Percentile

Assuming y(t) is a continuous random varizble with a probability
density function of ply), the value tk is defined to be (100k)th
percentile for y(t) if the area under ply) to the right of tk is k, where
0 <k < 1; that is; the (100k)th percentile has the property that

Il
~

(c.39)

Probly > tk]

v (T)
A
tk —
o
e
O]. - ‘;t O
(a) & continuous random variable (b) (100k)th percentile for

a random variable y(t)

Fig. C.17

Figure C.17 shows a graphical representation of tk for a general
probability density functica. The way in which the area changes

as tk moves depends on the particular probability density function
assum2d for y(t).. The commonly used values for 100k are the
integers between( and 100 (hence the reason for the neme). Median

m_ is introduced as a measure of the middle of the distribution and
splits the area under the probability density function inte two equal
parts; in particular, then, since the area to the left of my must be

0.5, the median is identical with the 50th percentile
m = t (C.40)

Percentiles canbe used to measure any desired aspect of the
Gistribution of a random variable. The most frequently used measure of
variebility is based on the percentiles in the interquartile range Ir
(Fig. €.18), defined to be the difference between the 75th and the 25th

percentiles
I = t -t (C.41)
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ply)

Y

e

Fig. €.18 Interquartile range

Ir' then, gives the length of an intexrval, centred ebout the median my,
which includes 50% of the total probability. Thus, as Ir increases, it
is necessary to take a larger interval abcut my to include 50% of the _

probability.

C.3.10.1 Percentile for a Dicistised Time History Record

Given a continuous time history record y(t) is digitised end
then arranged in descending order of megnitude. The quantities,
Var Vor ess Vir «e- Vy form a ranked array, and are referred to as the
order statistics of the digitised sample record. It can be shown (Larsen,
1975) that an average, over repeated samples, the proportion of popula-
tion values greatexr than or equal to vy is 1/(N+1). This is true whatever
the form of the continuous probability density function in the populaticn;
similarly the proportion of population values greater than vz-is 2/ (1),
the proportion greater than vy is 3/(1), up to the proportion greater
‘than v is N/(N+1). In short, the expected propurtion of population
values greater than vj is j/ (1) for j=1,2, ..., N, henge vj is the
[1005/ (+1) ] th percentile of the data set.

c.3.11 Autocorrelation Functions

The aufocorrélation function provides information concerning
the properties of the data in the time domain. For random data auto-
coxrelation function describes the general dependence of the values of
the data at one time on the values at another time; Considering the
sample time history record y(t) illustrated in Fig. C.19. An estimate

of the autocorrelation between the values of y(t) at times t and (t+t)



can be obtained by taking the product of two values and averaging over
the observation time T. The resulting average product will approach an
exact autocorrelation function as T approaches infinity. In equation

form

T
[y vy (t+mrat (C.42)
Q

. 1
Ry(r) = lim T

T

The quantity R _(T) is always a real-valued even function with a maximum

at v = 0, and may be either positive or negative. In equation form

y(t)

nmft/—\TA \nuMA L /] l g

AN ARAS BENASE:

Fig. C.19 Autocorrelation measurement

Ry(—T) = RY(T) | (C.43?

R, (0) 2 ]Ry(r)l for all T : (C.44)

In terms of the autocorrleation function, the mean value of

y(t) is given (excluding such special cases as sine waves) by

= o -
py VRY( ) {(C.45)

In words, the mean value of y(t) is equal to the positive square root
of the autocorrelation as the time displacement becomes very long.

Similarly, the mean square value of y(t) is given by
2 = R _(0) C.46
wy v ( )

That is, the mean square value is equal to the autocorrelation at zero

time displacement.
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c.3.12 Autocovariance Functions

The autocovariance function (often abbreviated as acv.Z.)

is the autocorrelation function after the mean of the record has been

substracted
1 T : .
v, (t) = lim = [J(y(t) - ) (y(t+T) - dat .
v T_)co T - IY lly Y ) lly) (C.47)

For a record where uy =0
(r) = R (1) | (C.48)
YY ) b4
Rlso as T Yy(T) + 0

c.3.13 butocorrelation Coefficients

Given a time series, y(t), with the population mean uy, the

autocorrelation coefficient is defined by the expressicn

E[y(e) - p) o (y(t+1) - p )]
Pe = z p— (C.29)
T EV® - u ) s Ely (e T |

in which p expresses the correlation which exists between all pairs of
T

observations y (t) and y(t+r) as a function of their spacing T.

For a finite data sample, estimates of the population values
of p are given by the serial correlation coefficients, Xo. Given a
. "'.‘ .
series of N cbservations, Yir with a mean, y, two over-lapping seguences

each containing (N-1) items of data, y,,v,.¥3 , and y

ot Ing T+17

Y .ot ¥ 437 Tt Yy are selected and their coefficient of correlation,rT,
T+ T

computed for 1=1,2,3,...,Tmax,Where Tpzyx Should not exceed 0.25 N(Matzlas,
167) . When T_.. is small compared with N, the following expre55101
given by Kendall and Stuart (1968) is known to be both adequate and

economical in compuier time

L Mot _ _

N-T 21 (YtiY)(yt+T—y)

r = t= (C.50)
T 1 N

L v, - v)?

I.
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c.3.13.1 Correlogrems

A plot of xr. as the ordinate against the lag,t , as the abscissa,
in which adjacent points are joined by straight lines, is referred to as

a correlogram.

c.3.13.1.1 Illustrations

Typical correlograms for four time histories of the Fig. C.11
are presented in Fig. C.20. If y(t) is a sine wave, i.e. y(t) =
acos(2wfot), where a 1s a constant, then it can easily be shown that

r = cos(2nf 1) (c.51)
T "o

The important feature of this correlogram is that it persists periodically
over all lags with the same period as the underlying sine wave, but the

phase argle information is lost.

The sharply peaked correlogram thch diminished rapidly to
zero (for large N, rT = 0 for all non-zero values of T), as illustrated.
in Fig. C.20(d), is typical of wide-band random data.. For the limiting
case of hypothetical white noise (random data with energy distributed
uniformly over all frequencies), the correlogram is a Dirac delta

function (see Appendix I) at zero time displacement (t = 0).

The correlogram for the sine wave plus random noise is simply
the sum of the correlcgrams for the sine wave and random noise separately,
as illustrated in Fig. C.20(b). Alternatively, the correlogram for the
narrow-band random noise in Fig. C.20(c) appears to be a decaying version
of a sine wave correlogram. An important feature, however, is that this.
correlogram will diminish to zero for large time displacements. The
four examples in Fig. C.20 illustrate a definite trend in the correlogram
changing pattern from the sine wave case to the wide~band random noise

case, just as was true for the probability density function.

C.3.13.1.2 BApplications

The principal application of an autoccorrelation function in
the measurement of physical data is to establish the influence of values
at any time over values at a future time.  The correlogram, which -
forms the basis of an autocorrelation analysis, reflects the structure
of the time series, taking a wide variety of forms depending upon the
dezinance of the deterministic and stochastic components within the

obs erved data. If the time series is completely randcm, the (population)



(b} Correlogram plot of a sine wave plus random noise

(c) Correlogram plot of a narrow-brand random noise

T
1.0A

(d) Correlogram plot of a wide-band random nrolse

Fig. C.20



autocorrelation function is zero for all lags other than zero lag, and
the (sample) correlogram will cnly deviate by small amounts from zero
because of saxpling effects. As the length of the series increases,
these sampling effects decrease. in contrast, a siue wave, or any
other deterministic data, will have a correlogram which persists over
all time displacements. If the series is composed of both deterministic
and stochastic components, regular peaks in the correlogram provide a
strong indication of the éresence of a cyclic component. A correlogram
provides a powerful tool for detecting deterministic data which might

be masked if presented in a randem background. There are other less
obvious applications for correlograms, but these are generally better
interpreted fram the Fourier Transform, the power spectral density

function, which is discussed in the next section.

C.3.14 Power Spectral Density Functions

The power spectral density function is a natural tool for
considering the frequency properties of a time series. Inference
regarding the power spectral density function is called an analysis in

the frequency domain.

The power spectral density function has been defined as the
'average power' of the process, expressed as a function of frequency.
If the average power of a process y(t) is defined as
T

}T— [y wyat =y 2 (C.52)

P~ lim
™ o ¥

then the power contribution between frequencies f and (f+Af) is

T

5'(f,f+Af) = P 2 (f,f+Af) = 1lim l- fyz(t,f,Af)dt (C.53)
¥ ¥ Toco T o

where y(t,f,Af) is the portion of y(t) in the frequency range from
f to f+Af. For small Af, a power spectral density function Gy(f) can
be defined such that

P (f,f+Af) = 2 (f,f+AF) = G_(f)Af C.54
| y( ) wy ( ) Y( ) ( )
Therefore U 2 (£, £+AF) 7
G (f) = lim -Y——-A—f—— = lim lim (Af)T f v? (t, £,0£)dt
Af+0 Af-0 Teo
(C.55)

The quantity Gy(f) is always a real-valued, non-negative function.



Frequenty, for simplicity, the engineer eliminates the
negative vealues of £, and for £ 2 0 the one-sided power spectral

density functicn is given by
jsy(f)df = 92 (C.56)

Normally, the mean Hy is subtracted from the time series. In this cece

the above xelationship may be written as

-]

= 2 : C.
iGy(f)df o, _ (c.57)

C.3.14.1 Normal Power Spectral Density Functions

It is sometimes necessary to compare time series which have
different scales of measurement, and in these circumstances it is useful
to normalize G(f) by dividing by the variance cy’ and plot G(f)/oy2
versus frequency £, the result is called the normal power spectral density

function.

C.3.1&.2 Illustrations of Socme Powexr Spectral Density Functions

iypical.Power spectral density functions(Gy(f) versus f)for five
time histories of Fig. C.11 zre showvn in Fig. C.21. These plots are
called power spgctra.' It may be of interest to point out that power
spectral density analysis has to be used with extreme care for periedic
- functions. The povwer spectral density function for a sine wave (Fig.
_C.3), as illustrated in Fig. C.21(b), is defined by

G5 = % &(e£) (c.58)

b 2 o

where G(f—fo) denotes a Dirac delta function at £ ='fo. In words, the
power spectral density function for a sine wave is infinitely large at
the frequency of the sine wave and is zero at ail other frequencies.
However, the integral of the power spectral density function over any
frequency range that includes the sinusoidal frequency has a finite
value equal to the mean squafe value ¥?/2 of the sine wave. The spike
spectrum for a sinusoidal process only results if the spectrum analysis
is performed over an integer number of periods of the function. If it
is performed over any length of the process, the resulting power spectral
density function will not be a single infinite spike but a finite spectrum

extending on both sides of the spike and having a negative power (dashed

83
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G(f)
infinite spike
(Dirac delta functiorn)

(a) Power spectral density function plot of a constant

G ()

infinite spike (Dirac delta

function)
(dashed line results from
\improper analysis)

-
e e ue e e
e e e s e s 3 S.a

——

(d) Power spectral density function plot of a narrow-band random noise

(e) Power spectral density function plot of a wide-band random noise

Fig. C.21 Power spectral density function plots
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line). This is not the true power spectral density function (this
problem will be discussed in detail in Secticn C.4) and therefore care
must be taken to ensure that the analysis is synchronized with the

process if periodic functions are present.

The relatively smooth and broad power spectrum illustrated in
Fig. C.21(e) gives rise to the descriptive term 'wide-band' for this type
of random data. For the hypothetical case of white noise, by definition,
this spectrum is uniform over all frequencies. The power spectrum for
the sine wave plus random noise is simply the sum of the power spectra
for the sine wave and random noise separately, as illustrated in Fig.
C.21(c). On the other hand, the power spectrum for the narrow-band
noise in Fig. C.21(e) is sharply peaked as for a sine wave (hence the
term 'narrow-band'), but still smoothly continuous as for‘random noise.
Once again, the last four examples in Fig. C.21 illustrate a definite
trend in the power spectrum changing pattern from the sine wave case to

the wide-band noise case.

The adjective 'power', which is often prefixed to 'spectral
density function' derives from the engineer's use of the word in
connection with the passage of an electric current through a resistance.
For a sinusoidal input, the power is directly proportional to the square
of the amplitude of the oscillation. For a more general input, the
power spectral density function describes how the power is distributed
with respect to frequency. There are a number of other popular defini-
tions of power spectra; power spectrum,spectrum energy spectrum, energy
density spectrumand energy density function {(often abbreviated as e.d.f.)
are all used as synonymous terms, and when one of these terms is con-
sidered, a careful check must be made to understand the meaning of this
term, because strictly speaking, mathematically, they may have a

different meaning. -

Cc.3.14.3 Application of Power Spectral Density Functions to Water Waves

C.3.14.3.1 Average Power of the Process

The average power of any process is defined by Eg. (C.52) and

is the mean sguare value of the process. If the water surface elevation

is denoted by y(t) and the still water surface by py, then it is customary
to call the deviation from the still water surface yb(t), where
(C.59)

y (&) = yl(t) - Hy
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Therefore y (t) is the fluctuvation in water surface elevation about a
o

Zero mean. From Eg. (C.52) it can be concluded that

T
P = lim [ y?)at = E[y ?(t)] {C.60)
YO Treo o O o

w3 [

vhere T refers to the length of the record. Further frcm Egs. (C.Z1)

and (C.23), it follows that

= g ? (C.61)

c.3.14.3.2 Sinusoidal Waves

The sinusoidal wave process may be described by the following

ecquation
y (£) = a sin(2wfyf) (C.62)
o

where a is the amplitude of the water surface fluctuation. From Eqgs.

(C.80) and (C.61), it is concluded that
Fy = g2 = a?/2 (€.63)

Using small amplitude wave theory, the expression for average total wave
energy (kinetic plus potential) per unit surface area may be described

as

Cw = pga?/2 (C.64)

Therefore, for sinusoidal waves

. = = 2 '
w = PgP = pgo (a)
Y Y
© (C.65)
e, SN ' ' (b)
Pg 4

*It has been shown (Thompson and Gilberd, 1971) that for complex waves of
a random nature (e.g. sea wfzes), the variance is equal to the energy

of the wave ?w/pg =g 2 = J- G (f)df'
Y o ¥

Hence the function G_(f) is called the energy spectrum. More correctly,
G, (f) is the enexgy %ensity function of the waves since it gives informa-
tion onthe density of energy at different frequencies. The variance
may be regarded as the total energy.
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€.3.14.3.3 Almost Periodic Waves

The mathematical expression for wave motion which is almost
periodic is ' ‘
- ,
y ) = ] a sin(2nf t + 6 ) | (C.66)

o n=1

and from Egs. (C.60) and (C.61), it follows that

. T o
- 1
P =02 = lim = f[ 2 a_sin(27f_t + 8_)]*at
-yb yb T T o n=l n n n
_ - (C.67)
P = o2 = 2a2/2
Yo YO‘ n=1 n

Thus the total average power is the sum of the péwers contributed by
each individual wave component. The corresponding discrete power

spectrum is shown in Fig. C.22.

y0.
A
312/2
a42/2
2
a2 /2
. 2 2 '. .
‘ ay /2 : a5 /2 s :
I [
1
0 e ¢ *— »-f
’ £, £, f3 £y _ fg fe

Fig. C.22 Discrete power spectral density function of an almost
periodic wave ‘

c.3.14.3.4 Ergodic Random Waves

Freom the previous section, it can be coﬁcludea that
. [ra) .
P = g2 = [G(fas £
'y Yy o
o)

W
o

(C.68)
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The average power of the recorded rrocess is equal to the area under
the power spectxél denéity function. If the assumption is made that
the total process'can be described by a number of linearly superimposed
sinusoidal waves, Egs. (C.65) applies and therefore the average power
calculated from the recorded process can be related to the average
 wave energy-. '

This is where the confusion between 'quer Density Spectrum' and
'Energy Density Spectrum' originated. It is the powér density spectrun
of the recorded process yb(t) (the distribution of power with frequency)
that is computed. This power spectrum can only be related to the wave

_energy density if the above assumption is ma@e.

C.3.14.4 Importance of Energy Density Functions

The ensrgy density function may be used to detect oscillations or
cycles in the time series. Its advantage over correlogram is its
ability to detect cycles of noncommensurable periods. The curve of
energy density function specifies the allocation of energy (or power)
among all the frequencies present.Peaks in the energy density function
correspond to frequencies which account for a large percentage of the
» 'tptal energy (Fig. C.23). The inverses of these frequencies then
give the periods of significant cycles in the time series, the signi-
ficanée being judged by the amount that a particular cycle contribptes'

towards the variance of the whole time series.
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Cc.4 SPECTRAL ANALYSIS USING FOURIER TRANSFORM TECHNIQUES -

The techniques of spectral analysis were greatly influenced by an
important development made by Cooley and Tukey (1965) who perfected a
nunerical method called the Fast Fourier Transform. The employment of
modern digital computers to facilitate these numerical treatments has

mede the Fast Fourier Transform particularly important.

The author felt that it was necessaryvto start from the simplest
concepts and from these to develop a coherent presentation of the subject.
Firstly a brief review is presented of Fourier series and of Fouriler
Transforms and their application to spectral analysis. Areas of par-—
ticular difficulty when using Fourier Transforms are discussed in

some detail.

c.4.1 Representation of a Periodic Function by a Fourier Series

A function f£(t) can be represented by a Fourier series if it is

continuous over some interval T. The following identity applies

{C.69)

£(1) - 2 " elwnt
n:—:bn
where .
w = 2%/T = 2nf . (Cc.70)
= p 2 —inwt |
By, = = ”52 £(t)e at | (c.71)

In this thesis, for convenience, the angular frequency, ®, will ke used:
in mathemztical formulae for conciseness, but the frequency f is often

used for interpretation.

C.4.2 The Fourier Integral and Transform

_ The Fourier integral theorem follows from (C.69) and (C.71) if
the interval integration in (C.71) is extended to T - <. Assuming
£(t) satisfies the Dirichlet conditions* over any interval the foliowing

integral e
M o= [ |£w)]at (C.72)

* If £(t) is a bounded periodic function which in any one period has at
most a finite number of local maxima and minima and a finite number of
points of discontinuity, then the Fourier series of f£(t) converges to
£(t) at all points where £(t) is continuous, and converges to the average
of the right-and-left-hand limits of f£(t) at each point where f£(t) is
discontinuous
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exists. By introducing a new varieble uh defined as

w = S5 = 2mf=ne n=0.1,23 ... (ay ]
(C.73)
_ 2m _ 2v(n-1) _ 2w _
Amn = T T = T = 2wf (b)
Eg. (C.69) can be rewritten as
[=-]
£() = Z H(wn)elgnt (a)
mn=—m .
h (C.74)
vhere /2 i
Hlw) = & [ £(the "'n'dat (b)
-T/2 ' ‘
As T o, Amn+0 ard Eg. (C.74a) degenerates into a double integral.
Removing the subscript n, Eg. {(C.74a) can be written as
[=-] 1 ‘mt (o] . t
£(0) = [ [pet T | fwe “tatlew (c.75)
yy=—c t=—e
This is known as the Fourier integral. From this it is possible to
cdefine
“+co
1 iwt .
£(t) = — [ H(we du : (2)
2q —e®
and (C.76)
1 7 fwt
H () = —— ff(t)e_lw at (b)
21 -

Egs. (C.76a) and (C.76b) are called a Fourier Transform pair. If
'Eq. (C.76b) is considered to be the forward transform, then Eg. (C.76a),
which recovers the original function f(t) from its transform, can be
called the inverse transform. The scale factor 1/V2m is chosen
arbitrarily so that the transform in either direction has the same
scale factor. If another factor is cheosen for the forward transform
then that for the inverse must be adjusted accordingly, i.e., if 1/2w
is chosen for Eg. (C.76a) then 1 must be taken for Eg. (C.76b). In
terms of the frequency £, the Egs. (C.76a) and (C.76b) representing the
Fourier transform pair can be written as (choosing the scale factors

egual to 1 and /2 respectively)



. e -2mift
F[£()] = [ fme T rae (a)

-C3

g (£f)

4o .
{ g(ere?™ st (b)

-0

£(t)
where F[ ] is the short form for Fourier Transform.

C.4.2.1 Conveolution Integral

The Convolution ox Falung integral is defined as

t .
[ f(e=p)g®)ag : (C.7¢€)

(o}

and is frequently denoted simply by f(t)*g(t).

c.4.2.2 Fourier Transform of Products of Two Functions

The Fourier transform of fl(t)fz(t) is

FIE ()5, (0)] = [ gy B)g, (F-E) G Imgltf—a)gz(a)da

(C.72)

g, (£) *g, (£)

where gj (f) and g3(f) are,respectively,the Fourier Transforms of £i (t)

and f2 (t) . »

c.4.3 Application of Fourier Transforms in Spectral Analysis

2n important property of the power spectral function lies in
its relationship to the autocovariance function. Specifically, ior
staticnary data, the two functions are related by a Foufier transform
(dEnkins and Watts, 1968) as follows
+oo )
¢, ® = [ YY<T)e'?2“deT | (c.80)

-0

The reverse Fourier transform is

+® {2 f
Y, = f Gy(f)el " Tae © (c.81)

92
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C.4.4 Windows

Any experimental measurement is limited to a finite time-span.
The record of data under consideration is cbtained by looking at the
signal for a period of T in Fig. C.24(a) and neglecting anything that
happened before and after that period. Limiting the record length to
a certain period T can be expressed mathematically by multiplying the
infinite continucus record in Fig. C.24(b) by a data window as des—
cribed by the relation

w (L) 1, lt] ¢ T/2 | (a)

(C.82)

w(t) o, [t] >T/2 (b)

The finite sample y(t)w(t) is equivalent to looking at the
infinite record through a window w(t) which ensures that the record is zero
everywhere outside the sample. This window itself has a Fourier

transform W({f)

T/2 o T/2
wHo [ e ™. [ [cos(2n£t) - isin(2eEn)]at
~T/2 -T/2 '
' (C.83)
. . sin(wfT) Y
= sin(vfD)/(af) = T ~GET T q(mT)
vwhere Jf(u) is de:ﬁ_i.ned‘ as
Jw = S2U | | | (c.84)

u

The function J(u) is plotted in Fig. C.25.

c.4.5 Fourier Transform of a Sine Wave

It is important to fully appreciate the role played by the
data window when a Fourier Transform is applied to the resultant record
(Bexgland, 1969). In order to demonstrate these effects, it is instruc-
tive to retrace the mathematiczl developments of a wave of infinite
duration and also that of a wave of finite duration. The analysis in

each of the two cases demonstrates the use of window functions.
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Fig. C.24
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J (u)

»JJ%u) =(sinu) /u

1

Fig. C.25



c.4.5.1 The Infinite Cecntinuous Reccrd

Civen a cosine wave of amplitude Y and freguency fo defined

for all values of time t by

v(t) = Ycos(21rfot) ' (C.85)
Viewed throuch a window of infinite extent its Fourier Transfornm is
given by
-0
-27ift
Fly®] = [y®e T at (a)
- oiee (C.85)
Fly(©)] = [ Ycos(anf t)e " ‘at (b)

-0

Vith the Euler relationship*, the trigonometric function can be replaced

ky the sum of the two complex expcnential terms. Thus
P

4o
Y 77 2mit(f -f) | -2nit(s
Y e o F) 4 TP ER g (C.87)

-0

Using the relationships presented in Appendix I, the ebove ecuation can

be written as
Fly ()] = g(f) = %Y{(S(f—fo) + 6(f+fo)} (c.88)

This 'mapping' of a cosine wave from the time domain into freguency space
is illustreted in Fig. C.26.

g (f)
A

y (t) A

Fig. C.26 A cosine wave and its Fourier Transform

t must be emphasised that the ordinate of the Dirac pulses

is indefinite. The area under each pulse, however, has a finite value, .

thus

= +m‘"cs £-f 8 89)
A = fi[ (F-£) + 8(£+£)]af = ¥ (c.

-0

* Euler relationship is defined as e ® . cosb+isinf, and its obvious
campanion is e 1€ =cosB-isind.

96
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C.£.5.2 Tne Finite Continuous Record

Now cenfining attention to thecasewhere y(t) = Ycos(2nfot)
is viewed thrcuch.a finite window w(t), where
wit) = 1, . ] € z/2 (a)
| (€.90)

w (t) -0, otherwise (b)

Seeing the functica y(t) through e window w(t) is expressed mathematically
by forming the product of these two functions. The Fourier Transform

of this product can be eveluzted most readily by calling on the
Convolution integral as defined by Egs. (C.78) and (C.79). The Fourier
Transform of w(t) is found from Eg. (C.83) as

sin[(T/2)2=¢
(T/2) 27f _ - (C.91)

W(E) = T

Using the relationship (C.79), it can be written that

Flye)] = G(£)*u (&)
+o , _
. i
= B[ tslr-tem5 )] + 8[z - (g4 )] S(;r/lé;éﬂ)cm; a
- (c.92)

where G(f) is the Fourier Transform of theinfinite cosine wave. Now,
-using the so called 'shifting property' of the Dirac delta function
(Appendix 1), it follows that

- oy YT sin[27T (£-£5) /2] | sin[27T(f+£0) /2]
G £fl=—" .
(£) > WiE) =3 {ZTrT(f—fo)/Z T ZnT(EE,)/2 b

Using the relationship (C.S1), the Convolution G(f)*W(f) beconmes

G(£) "1 (£) = g (£) =-Y2—T {J[r.T(f-fo)] + J['n'T(f+f°)]} (c.9é)

The 'mapping’® of this finite portion of a cosine wave is indicated in
Fig. C.27. The ordinates in the fregquency space are now finite every-

vhere and the meximum is (YT/2)[1 + sin(2w£6T)/(2ﬁfoT)].

It is of interest to examine the area under the curve defined
by Eg. (C.24) and to compare it to that given by Eg. (C.89). Here, it

can be written

+e2 : -4 .
A = }%{ f {51n[2“1 f-£0) /2] + s;n[2wT(f+fo)[g]}df (C.95)

2:T(I—fo)/2 2ﬂT(f+;°)/2
This integral* reduces to the following after some mathematical mani-

pulation
A = v (C.96)
f sin mu
o

* It should be noted that sinu/u is an even function and du = 7n/2,

0, or - m/2, as m is positive, 0, or negative (Dwight,1261).
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| A |

Fig. C.27 Truncated cosine-wave and its Fourier Transform

This means, that the area under the transformed function remains the
same, whether a finite or an infinite record is used. The only diffe-

rence lies in how this area is distributed over the frequency-axis.

Since the Fourier Transform is a linear operator it is apparent
from Eg. (C.94), that if several frequencies are present in a signal the
transforms are superimposed in the frequency domain. Thus the ordinate
at £ = fo would be, for several frequencies including fo' the sum of the
maximum- due to the fo frequency and the contributions from all other
frequencies present. The magnitude of these contributions depends on
the amplitude‘Y1 and the frequency difference (fo—fl), where Yl and f1
exe the amplitude and frequency of some second signal. For two different

cosine waves Eg. (C.94) becomes

Fly (£)J=9(£) = G(f) *W (£)

YT{ s:.n[21rT(f-—fo)/2]+ 51n[2ﬂT(f+§Ql/2]} (C.97)
2T (£-£_) /2 25T (£F+£ ) /2

Y, T 51n[2WT(f—f1)/2] 51n[2wT(f+f1)/2]
2T (£-£,)/2 * 27T (£+E,) /2

+ =5 {

where

y(t) = Yeos(2mf t) +y, cos(2mE) : (c.98)
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C.4.5.3 The Finite Record with Discrete Values Only

when the data is only available in digital form, this can be
thought of as passing the signal through a window consisting of a
'Dirac comb', as illustrated in Fig. C.28. Since the finite reccrd
length is specified by the width T of the continuous window w(t), the

Dirac comb itself can be considered infinite in extent.

y(t) : g(£f)
A
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.

|' M; At] 1/&t‘ E/At‘l/At 1ot |1/at II/it

)

Fig. C.28 The Dirac comb and its Fourier Transform

To obtain the Fourier transform of the finite and discrete
data, it is necessary to employ the Convolution integral again. To
achieve this it is first necessary to derive the Fourier transform of

the Dirac comb.
The Dirac comb can be expressed andlytically as

oW

c{t) = } (t-mAt) = V(t,At) (C.99)

n=-—w
Using Eq. (77a) the Fourier transform of (C.99) can be written as

P noEe ~-2nift
c(f) = [ § &(t-niv)e at (C.100)

-0 n:—-oo
The order of integration and summation can be interchanged. Then,if
the identity (I.2) is applied to each element of the summation and the

-m is made, the final expiession for C(£) becomes

substitution n

: v 2mifmAt
C(£) } e (C.101)

m=- -]



[
o
[&]

In fact Lighthill (1961) has shown that

(-3 X : 1
z 6 (Q-ma') = o

m=-w =~

(C.102)

Letting At = 1/a', the Fourier series to the right of Eg. (C.101) becomes

v 2mifmAt 1 % m
Y e = 7 1 s (C.103)
m=-o m=-

Hence _the Fourier Transform of a Dirac comb leads to another Dirac comb,

so that

1 v m 1
c(H) = 5 Y S(f - D - ZE-V(f,1/At) (€.104)

m=-«

The introduction of the Dirac comb modifies the transform of the original
cosine function (taken as an example) further. The resultant trans-
formation is obtained by employing the transforms represented by

Egs. (C.94) and (C.104).

In other words, the product y(t).w(t).c(t) in the time domain
corresponds to, in the frequency domain, the convolution of the respective

Fourier Transforms G(f) *W(£f) *C(f)

YT (sin[21T(E-£5) /2]  sin[21T(E+Eo) /2],

g (£f) =G(£)*W (£) *C(£) =—w 5 27"T(‘5'fo) 75 2TrT(E+fo)/2
(C.105)
1 ' -2 _n4
X Z-'E =§m G(f At E) g
Integrating and making use of the shifting property of the Dirac
delta function, the final result is
v . sin[2nT (£- m/gt)-fo] n[27T (£- m/gt)+fo]
g(f)=—— ——{ + }
2 me—oBt 277 (£- m/A;:) - £5 om (£- m/mz;) + fo
' (C.106)
. Xy o £ -5 - £)] + J[0T(E - —+ £)]}
= 7 1 fplTE - - L st ¥ o
=~

Equation (C.106) represents a continucus rather than a discrete function
of frequency in the frequency domain. It consists of a sum of damped

sine curves, and has the appearance shown in Fig. C.29.
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Fig. C.29 Digitised truncated cosine function and its Fourier Transform
c.4.6 leakace

A rectangular data window of width T defined in the time
domain by Egs. (C.82) and illustrated in Fig. C.24(c) was shown to have
a Fourier Transform represented by Eg. (C.83). Referring to Fig. C.25,
this frequency window consists of a series of damped sinusoidal oscilla-
tions or lobes. It has a value of unity where u = 0 and decays to zero
at u = e, The aﬁplitude maxima of the function J(u) =-§%%ii occur at
u =0, 3n/2, 5n/2, 77/2, 91/2 etc. and the successive magnitudes of the
function are 1.0, -0.212, 0.127, -0.091, 0.071 etc. The first zerces

of the function on either side of the peek occur at u =invor 7fT = #7 or

f = 21/T, i.e. the larger T the narrower the mzjor lobe of the function.



The effect of the finite sample of the cosine wave can now be
seen by comparing the infinite and finite duration results(Egs. (C.88)
and (C.924)). The infinite duration case has two spikes at f = ifo
whereas in the finite duration case the sPikes'have become two principal
lobes (compare Fig. C.26 with Fig. C.27) about f = ifo with finite heights
and widths. These widths get smaller as the sample length increases,
i.e. the lobes become more like a spike as the sample length approaches
infinity. Thus the window has the effect of spreading or smearing the

result in the frequency domain.

The presence of side lobes introduces certain distortions in
the fregquency domain. The energy associated with a f£reguency fo can
contribute to that registered by adjacent frequencies. This phenomenon
is usually referred to as leakage; Indeed if the window is réctangular,
the side lobes in the frequency domain (Fig. C.25) are unacceptably
large. The most common method of combating this difficulty involves
modifying the shape of the data window by reducing the abrupt termination
of w(t) in Fig. C.24(¢) at t =xT/2. AEmong the best known modified data
windows are ‘Hanning' or 'Herming' windows. Their principal aim is to
suppress, to some extent, the unwanted side lobes, thereby curtailing

energy leakage into adjacent frequency ranges.

C.4.6.1 Hanning Window

The Hanning window (cosine-hump window) has the form

wit) 0.5[1 + cos(vt/T)], -T<tgT ’ (a)

(C.107)

w{t) 0, otherwise (b)

For T = 20, the function is illustrated in Fig. C;30(a). Its Fourier
Transform Wl(f) may be calculated as

+oo : A
WoE = Flwn] = [wwe e (C.108)

-0
With the Euler relationship, the trigonometric function can be replaced
by the sum of the two complex exponential terms. . Thus

Tit/T + e—nlt/T)]e-Znift £

WoE) = % f[L+ k(e a (C.109)
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After some manipulation this integral reduces to

sin(27£T)

Wy () ME(-4ET) (c.110)
or
W (£) = T3, (f) ‘ _ (c.111)

where Jl(f) is defined as

“_ sin(2w£T)
T8 = Er(icae ™) (C.112)

The ebove function is plotted in Fig. C.30(b). It has a value of unity
where £ = 0 and decays to zero at £ = Zw. From Eq. (C.112), it follows

thet

1 _s
f =20 f:E 5f=4T f='—f f_4T

(C.113)

: 8
Jl(f)=1 Jl(f)=0’5 lJl(f)=15 _1.’(f)=0A 1(f),=—-1—0-5

The spectral sice lobemagnitudes of this window represent only a few
percent of the main lobe magnitude hence virtually all the leakage is

held within the main lobe. -



c.5 POWER SPECTRUM OF DIGITISED DATA

It is understood that power spectral density function is the
name given to the methodsof estimating the spectrum of a time series.
This thesis is mainly éoncerned with purely indeterministic processes,
which have a continuous spectrua, but the technigues can also be used
for deterministic processes to identify components in the presence of

noise.

C.5.1 Fourier Series Representation (Harmonic Analysis)

» vIn this séction an attempt is made to modify the generalized
forﬁ of the Fourier series discussed in Section C.4 so as to make it
suitable for stochastic rather than deterministic functions of time.
The common periodic functions are sine and cosine and Fourier analysis
is basically concerned with approximating a function by a sum.of sine

and cosine terms, called the Fourier series representation.

Early attempts at discovering hidden periodicities in a con-
tinuous signal of duration T consisted of making the time series dis-
crete by sampling the values of the signal at a spacing of At, then
approximating by a sum of sine and cosine terms. This produces

N = T/At sample values yr) where
y, = ylrat) ‘ - Ye.114)

For convenience it is assumed that N is even. It should be noted.that
periodic functions which pass through the sample values may be chosen in
an infinite number of ways. For example, the finite Fourler series con-

taining N terms may be written as

} /2 -1) 5 2np
v (t)= [aocos (O)+bosin (0)] + zl[apcos (ﬁ_A—E t) + p(NAt 28
2= (c.115)
+ [aN/2 cos( ) + (0)51n( )]

Equation (C.115) contains N constants, ap and bp, which can be determined

so that the discrete and continuous values coincide at the points

t = rAt, that is, y(t) =y . It follows that the function v(t) provides

an approximation to the criginal continuous function y(t) in the interval

0 <t <T.
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On substituting t = rAt in Eg. (C.115) and setting y(rAt) = Yo,
a set of N equations for the N unknown constants is obtained. The final -

expressions for the coefficients are

N
1 —
a, = § ) Y, =¥ (mean value of y )
r=1
N
2 .2
ap = ¥ 21 Y, s:.n(—;;—g-r)
r= N
P=1,2 ..., (3-1) (C.116)
b = 2 g ¥ sin(gﬂg'r)
P N 2T N
N
1 r
a = =} (-1)y
N/2 N r=1 *

The Fourier series representation (C.115) has N parameters to
describe N cbservations and so can be made to fit the data exactly*. The
overall effect of the Fourier analysis is to partition the variability

- . . . 1 2 1
o S T e Ta s
f the series into components at frequencies NAEt 'NAE " SAt

This is illustrated in Fig. C.31.

As it has already been defined, the frequeﬁcy f1 = E%E-is the
fundamental frequency of the record and corresponds to a pericd equal to
the length of the record. The dimension cof f, is cycles per second (Hz)
when t is measured in seconds (sec). The highest frequency present is
1/2At (Hz), which corresponds to a period of two sampling intervals,
the component at frequency fP = p/NAt is called the pth harmonic. For
P # N/2, it is often useful to write the pth harmonic in the equivalent

form
apcos(gﬁﬁfﬂ + b in(gﬁ%%) = Rpcos(;Z§t + ¢P) (C.117)
where
Rp = amplitude of the pth harmoni§'= #Eé:?fii; (a)
(c.118)
¢P = phase of pth harmonic = tan—l(—bp/ap) (b)

* Just as a polynomial of degree (N-1) involving N parameters can be
found which goes exactly through N observations in a polynomial regression.



b : 107
A - \ ' '
b | i
i
iy A | | . b i
b A e T N/ |
I i llll,llllyl !lllll'll ‘I
A U R |
I]}"l||;|"lll b P! lltl
'Il”'l‘l"' llln‘illll! S
0 ¢—s I S S NS U U U U U U 0 U S U S D WP S W G W W W
T——*—at«— T = Nat J_
i A discrete data of size N obtained by equispace‘ g

sampling of a continuous signal

£, = s =1/T Ty = dat

2nd harmonic £f,= 2/NAt T. = NAt/2

pth harmonic _ fp = p/NAt




C.5.1.1 Parseval's Theorem

It is known that the mean square value of the record is

, N
5 zly; A : (c.119)
Y=

Parseval's theorem states that for p # N/2, the contribution of the pth
harmonic to the total sum of the squares is given as NR;/Z = N(a; + b;)/2

Hence
(N/2 -1) 1 N
R+ ) R*/2 + a2 = = V2 (c.120)
o o=1 1) N/ 2 N oy X

It must be emphasised hexe that ag (which is the mean or average value

of yr) is equal to Ro' The above relationship can be written as

; N (N/2 -1) :
5 Zl(yr -Rr)? = 21 R/2 + & (c.121)
=1 P=

The left-hand side of Eg. (C.121) is effectively the variance of the
observations although the diviscxr is N rather than the more usual (N-1).
Thus R;/2 ie the contribution of the pth harmonic to the variance, and
Eg. (C.121) shows how the total variance is partitioned.

C.5.2 Transformation of Data to Zero Mean Value

, ‘In order that subsequent formulae and calculations may be
simplified, it is desirable at this time to transform the data so that it
-has a zexo mean value. If a new time history record is defined as

Yo (xAt) = y (xAt) - v, then zn(rAt) has data values given by

residual =y (xrbt) = y(rAt) -y | ' }(0.122)
r=1,2, ..., N
It should be noted thatfi:?zzz) = 0. The reason* for representing the
original data values by y (rAt) instead of y(xAt) is to have the xo(rAt)
notation indicating a zero sample mean value. Subsequent formulae

will now be stated in terms of the transformed data values xp(rAt).'

* In wave studies y,(xAt) is the 'wave height' or fluctuation in water
surface about a zero mean.
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c.5.3 Fourjer Line Spectrum-Raw Periodogram

If R;/Z is plotted against fp = p/nAt, a discrete or Fourier
line spectrum will be obtained. Because the energy is concentrated
around particulaxr frequencies and not spread throughout all freguencies,

it is inappropriate to plot a line spectrum. However, R:/2 can be

, . . . L, P 1
regarded as the contribution to variance in the range NAE ﬁ HAE ¢ and a
histogram can be plotted whose height in the range P_ + is suchthat
N&t 2NAL
‘ R;/Z = area of histogram rectangle
; 2
= h ht of histogr -
&9 LOTOUTED X oNat (c.123)
1
Therefore
I(0) = O
(C.124)
_ NAt
I(fp) = 5 RP

p=1,2,3, ..., (/2 -1)

As usual, (C.124) does not épply for p = N/2; a§/2 mey be regzrded as

r |~ 1 i
s . . _ \
the contribution to variance in the range L(2At NEE 2At] so that
I(—l—o = 2NAt « &2

The plot of I(f) against f(Fig.‘C.32) is usually called raw periodogram.
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Fig. C.32 A raw periodogram



The totel area under the raw periodogrem is equal to the variance of the
time series. Expression (C.124) may readily be calculated directly
from the data by ccmbining Egs. (C.116), (C.118a) and (C.124)
" N
I(f ) —(2At/N){[ z Y, cosb——— r)]2 + | z Y, sln(————r)]z} (C.126)
r=1 r=1
From Fig. C€.32, it can be seen that 1/(NAt) is the lowest frequency and
1/(2At) is the highest fregquency which can be detected from the periodo-
gram of data sampled at At (hence the signal y(t) is said to be band
limited) . The frequency fN = E%E-(Hz) or wN = T/At (radians per sec)
is called Nyquist folding frequency, cutoff frequency or simply Nygquist

- freguency.

The periodogram appears to be a natural way of estimating the
power spectral density function, however it will be explained that for &

process with a 'continuous' spectrum it provides a poor estimate and

needs to be modified.

C.5.4 Hanning Window for aDigitised Time Series

For a digitised record of size N, the Hanning window weighting

function wi takes the form

= - nw
W intl) 0.5[1 - cos ()]
(c.127)
= 0.5{1 + cc>s[(M —n) 7 13
n=20,1,2, ..., (M-1)
fpr the first M values of the data and the form
w- = 0.5{1 - cos[(N jn’T]} (C.128)

n
n= (N-M+1), ..., N
for the last M values, before spectral estimation.

The ratio M/N is between 1/20 and 1/3. For example if
100 < N < 200, a value of M of about N/6 may be appropriate, while if
1000 <N < 2000 a value of M léss than N/10 may be appropriate
(Chatfield, 1975). |

110



111

€.5.5 Properties of the Raw Periodogram

The raw periofdogram derived from the Fourier coefficients of
~any time series, e.g. a wave record, is highly exratic unless it is
given special treatment. This holds true no matter how long a sample

is taken from the signal or how hich a sampling rate is used.

In order tovunderstand this behaviour, it must be remembered-
that the estimated raw periodogram exhibits a certain_deviétion from the
truve energy density function. This is evident since cne data semple is
only a finiﬁe record (in time) of an infinite number of possible infinitely

» long realizations of the process. Clearly, the avereging of the raw
periocdogram calculated from manv datz samples should give a result closer

to the true energy density function.

Tucker (1957) gave an insight into the problem of the variability
6f the periodégram for the case of a gaussian random sea. He showed
‘that the elements of the periodogram calculeted from a sequence of
Statistically independent data values having a gaussian distribution are
independeﬁtly distributedas & x% (appendix II); i.e. the I(f) calculated
from rebeated data samples of the same process has a chi-squared distri-

bution with 2 degrees of freedom.

 From Appendix II, it immediztely follows that the coefficient
of dispersion of the raw periodogram is 100%. In effect, a raw periodo-
gram is a very poor estimate of the true continuous'spectrum G(f) of the

process. Although

E[I(5)] <> G(£) : - (C.129)
N
i.e. the periodogram is asymptotically unbiased, Chatfield (1975) has
.proved that the estimator I(f) is not a consistent estimator of G(f).
A well-behaved estimator has the property that_its ﬁafiéhce_decreases
with increased record length (or sample size), yet the var;ance of I(f)

does not decrease as N increases
var[I(f)] 0  as N = e (C.130)

From the above discussion, it can be concluded that the raw
periodogram is highly unstable. The change that is reguired to make the
raw periodogram part of a consistent estimating procedure involves apply-—

‘ing a smoothing procedure to the raw periodogram ordinates.



- C.5.6 Smootﬁing

This approach smooths the perioaogram by simply grouping the
periofogram ordinates in sets of size m and then the average value of

each group is found. In this case

-~ (m+n-1)
1 ~ .
G(EH = = 3% I(£,) n is an integer (C.131)
m-, & N
J =n
where fj = j/HAt and j varies over m consecutive integers so that fj
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is symmetrical ebout £. In order to estimate G(f) at £ = 0, the relation-

ship (C.131) hes to be modified in an obvious way, treating the raw
pericdogram as being symmetrical about 0. Only at this point is m
assumed to be odd (cbviously if m is an even number, one unit-should be
" added to it), with m* = (m-1)/2, E(O) may be written as

~ m*l\
GOy = 2} I(£)/m . (C.132)

J=1

The other ordinates are cbtained by the following relation

N mkm oo (mrakm + D)/ (NAL
G - ) ¢ (s o £1 =(m*+ 1+ =5 )/ (NAL)
j=[m*+(k—1)m+1]3 k =1,2, ..., L

where £ is an integer (€.133)

less or equal to
(N/2 ~m*) /m

If (@* + fm) # /2, [N/2 - (@* + fm)] is the number of remaining raw
periodogram ordinates (which is less than m), assuming the raw periocdo-

gram to be symmetrical about fN/Z = 1/2Aat, if (@* + fm + 1) < N/2 then

A ey /2 -1) |
Gz = [I(s) + 2 ) I(£.)]/ (N-2m*~24m-1) (C.134)
at 26t F=m*+Llm+1 J ‘
But if (m* + fm + 1) = N/2 then
~ 1 s g :
Gl = I(EZQ? , . (C.135)

Cc.5.6.1 Properties of the Smoothed Periodogram

Vhereas the raw periodogram is an asymptotically unbiased but

inconsistent estimate of the true spectrum, smoothing changes the proper-

ties of the estimator. Jenkins and Watts (1968) showed that the smoothed

periodogram is such that X = vé(f)/G(f) is approximately distributed as
x;, where VvV = 2m. This means that the random variable X has got 2m

degrees of freedom. From Appendix II, it immediately. follows that



Var[VB(£)/G(£)] = v* Var[G(£)/G(£)] = 2v
var[G(£)/G(E)] = 2/v = 1/m (C.136)

The coefficient of dispersion of [G(£)/G(£)]= 1/vm

The above relationships immediately lead to the cenclusion that a smaller
sample variance and hence a more stable estimate of the smoothed periodo-

gram can only be achieved for a large number of degreés of freedom or m.

C.5.6.2 Recommendation for the value of m

There seems to be relatively little advice in the literature
on the choice of m. It seems advisable to try several values in the
region of N/40. A high value should give an idea where the larce pezaks
occui in the spectrum é(f), but the curve is likely to be tco smooth.

A low value of m will produce a curve with a large number of peaks, scne

of which may be spurious.

Care should be taken in the choice of m, the effects of
'variance'and'frequency recsolution' are in opposite directions. The
larger the value of m the smaller the variance of the resulting estimaﬁe
is but if m is too large then interesting features of é(f), such as peaks,
may be smoothed ouﬁ and hence pass unnoticed. Any gain in stability
through an increase in m is accompanied by a loss in frequency resolution,
a compromise must usually be found between these two conflicting objects.
If a smooth and continuous spectrum is expected, s would be the case
for a turbulent flow signal, emphasis should be placed on obtaining a
stable spectrai estimate by increasing m to the detriment of frecuency-
resolution. If, however, the process undexr study exhibits one or more
energy peaks along the frequency axis whiqh must be identified, then the
value of m must be limited to a minimum. Thus the loss of information

caused'by the smoothing process is reduced.
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C.5.6.3 Confidence Limits for the Smoothed Periodogram

Since [vé(f)/G(t)] is approximately distributed as ¥

2\) where
Vv = 2m, it follows that (Fig. II.1).
P 2 < o < 2 = —
rob[x(l_ ©/2) v VG (£} /G (£) Xa/2,v] 1-o (C.137)
so that the 100(1-¢)% confidence interval for G(f) is given by
the upper confidence limit = v?(f) (a)
X Vv
(1- a/5)’
2 (C.138)
the lower confidence limit = Xgiil- (b)
Xa/2,v

Thus the true spectrum G(f) is said to fall between the upper and lower

confidence limits and to have a 100(l-u) percent confidence.

c.5.7 3 Point Smoothing

This methed is based cn smoothing the raw periodogram using

the weights (1/4, 1/2, 1/4) to give the estimates

G(0) = 0.5I(0) + 0.5 I(NAt)
- (k-1) (k+1)
G(NAt = 0.25 I[ T 0.5 1( D *t0.25 1] NET ) .
k = 1,2,3, cee (/2 -1 (5 39)
G(ZA—t) = 0.5 I(_ZZE_ 1) + 0. SI(ZAt)

Eq. (C.139) is implemented easily on a binary digital computer when com-

pared to the previous smoothing procedure.

C.5.8 Aliasing

When a continuous function is sampled at constant time inter-
vals equal to At sec, values between sampled data points are discarded.
In general an analogue signal of a wave can be thought of as a sum of a
great number of sinusoidal functions of varying amplitude and freguency.
If the sarmpling rate is too slow in relation to the highest frequencies

present, too much information is discarded. As is illustrated in



Fig. C.33 through sampling, the high frequency components are indistingui-
shable from lower frequency elements. It should be noted that for the
given sampling interval it is impossible to tell which of the two
harmonics is being observed. Thus, the power attributed to the more

slowly varying harmonic will be, in some senses, the combined power

y(t)

fe— —
oy — —

f

ot

At (\7at

(oY
. rbrlr-—-— _—

Fig. C.33 Illustration of two sinusoids made indistinguishable by
sampling at intervals of length At.

of all harmonics which are made indistinguishaeble from it (i.e., are

aliased with it) by sampling. This effect is commonly called aliasing.
c.5.8.1 Theorem

A continuous time series, with spectrum Gc(f) for 0 < f <« », is
sampled. at equal intervals of length At. The resulting discrete time
series has spectrum Gd(f) defined over 0 < £ < 1/2At. Then Gc(f) and
Gd(f) are related

«© (o] .
A A . .
G () = ) G+ + Y6 (-£+ 2 (C.140)
a 40 c At 821 c At
The implications of this theorem zre now considered. Firstly,
it is noted that if the continuous series contains ne variation at
frequencies above the Nygquist frequency, so that G, (f) = 0 for £ > 1/24¢,

then Gd(f) = Gc(f). In this case no information is lost by sampling.
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But more generally, the effect of sampling will be that variation at
frequencies above the Nyquist fregquency i/24t will be 'fclded back' and

produce an effect over the 'visible' freguency 0 < £ g fN = 1/2At in

G4(f) .-

ﬁ(f) G (f)

—— > £
fN
(a) True spectra

(b) Aliased spectra

Fig. C.34 Aliased power spectra due to folding

For any frequency f in the range 0 ¢ £ ¢ fN’ the higher frequencies which
are aliased with f are defined by

(2fNif), (4fNif), ceen s (2anif), (C.141)
Variation at all these frequencies in the continuous series will appear

as variation at frequency f in the sampled series.

c.5.9 Fast Fourier Transform

Until recently the energy density functions of the stationary
time series have been calculated indirectly through autocovariance
functions. Many authors such as Chatfield (1975) have pointed out that
an algorithm developed around the basic Egs. (C.116) requires a number of
operations proportional to N* for a series of N data. For large data
series this leads to prohibitive running times even when modern computers
are employed. The advent of the F.F.T. algorithm makes the calculations
of the energy density function much faster than the classical procedure

via autocovariance function.



A history of the F.F.T. is described by Coocley, Lewis and Welch
(1867), the ideas going back to the early 1900's. But it was the work of
Cooley and Tukey (1965) which first stimulated the application of the
technigue to time series analysis. The details of this technique is
civen by Otnes and Enochson (1972), Bingham, Godfrey and Tukery (1967)
and Bendat and Piersol (1871).

The F.F.T. technique substantizlly reduces the time required
to perform a Fourier analysis on a computer, and is also more accurate.
Much bigger reductions in computing can be made when N is highly com-
. posite (i.e. has many factors). In particular if N is of the form 2
(e.g. N = 256, 512, 1024 etc.), then the number of operations will be of
the oxder NlogzN instead of N2. Singleton (1269) gives a general computer

DY ogreammme .

C.5.10 Recommendation for Sampling Rate and Length of the Recoxrd

~ Two basic parameters are needed for the analysis of a time vary-
ing stationary random process;A The first is the length T of the record
and the second is the time interval At (or the sémpling rate 1/4t) at which
the record is sampled to give the N data values for analysis. The selec-
ticn of the sampling rate is determined by the desire to avoid aliasing.
Thus it is necessary to_have a prior. knowledge of the highest
-frequencies containing appreciable energy that are present in the sampled
re;ord. Givzn such an estimate of the highest frequency %Euyhich may
be derived from results of previous experiments at similar conditicons,

the sampling rate is specified (Thompson and Gilberd, 1871) by

it S 4fmax ' : | (a)
(c.142)
LAt £ 1/4fmax : (b)

It is -evident that T = NAt =2TAt.
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c.é QUANTIZATION ERROR

Analysis of random data is usually done by using a digital

computer.

This implies that the ccntinuous or analog signal will have

to be sampled in the manner of C.3.4 and the sampled values converted

to digital fomm.

consecutive values is required.

- — — — =

No matter how fine the scale, a choice between two

actual data

 — —
*—

{
|
|
I
l
D

This matter is illustrated on Fig. C.35-

scale units

S———

6? At 2At 34t kat
Fig. C.35 Quantization error

O B cmm e

> Time

In this figure one would choose a+l as the closest numerical value to

the data at time kAt.

If it is assumed that the guantization errors follow a 'uniform

probability distribution' over ‘'one scale unit’', then these errors will

have a mean value of zero and a standard deviation of approximately 0.29

Scale unit.

This is easily shown as follows.

Let p(y) be the guantizaticn error probability density function

defined by

ply)

1, -0.50 £ y € 0.50

o, otherwise

(a)
(C.143)

(b)



Then, the mpean valune uy is ¢learly zero since p(y) is symmetric about
vy = 0, and the variance

G o

o = J wwprpiay = [y'ay = 1/12 (C.144)

-—C0

The standard deviation

Uy = V1/12 = 0.29 scale unit (C.143)
This is the root mean sguare value of the quantization error,‘ﬁhich nay

be considered as a root mean square noise On desired signals.

To apply this result, if the full range of a signal is quan-
tized at 256 scale units, the root mean Sqﬁare noise-to-signal ratic is
' 0.29/256 = 0.001. This illustrates that, for most practical problems,”
quantization errors should be.negligible when signals are guantized

at 256 oxr more scale units.
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c.7 JOINT PROPERTIES OF RANDOM DATA

Thus far, the attention has been confined to the analysis of
a sinéle record. The statistical functioné in Section C.3 are useful
to describe the properties of data frem individual random processes.
It is often desiraﬁle to describe certain common or joint properties of
different data from two or more random processes. For example, it may
be of interest to study the height of waves at various points on the
surface of the sea. The average properties of the wave height at each
point could be described using the statistical functions discussed
in Section C.3. However, there may be additional important information
ih simjilar joint statistical functions which can be computed for the wave

heights at two points on the sea.

One of the main types of statistical function used to describe
the joint properties of sample records from two random processes is the
cross-correlation function. It is effectively an extension of the basic
formulations used to describe the properties of individual sample records

which produces information concerning joint properties in time domain.

This joint descriptive property for two sets of stationary random
data will now be defined in broad texms. Once again, the discussions will
assume ergodicity so that the joint time-averaged properties of single

.pairs of sample time history records can be considered.

c.7.1 Cross-Correlation Functions

The cross-correlation function for two sets of random data
describes the geﬁeral dependence of the values of cone set of data on the
other. Given the pair of time history records x(t) and y(t) illustrated
in Fig. C.36. &2n estimate'for the cross-correlation function of the values
of x(t) at time t and y(t) at time (t+T) may be obtained by taking the
average product for;the two values over the observation time T, as is done
for autocbrrelation functions in Section C.3. The resulting average product

will approach an exact cross-correlation function as T approachés infinity.

That is,-
R (1) = lim I Jx(®)y(e+m) @t (C.146)
T o
The function ny(r) is always a real-valued function which may
be either positive or negative. Furthermore, ny(T) does not necessarily

have a maximum at T = 0 as was true for autocorrelation functions, nor

is Rky(r) an even function as was true for autocorrelation functions.
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Fig. C.36 Cross-correlation measurement
However, ny(T) does‘display 'symmetry about the ordinate when x‘and Yy
are interchanged, that is
(C.147)

ny €] = RyX (-7)

When ny(r) = 0, x{t) and y(t) are said to be uncorrelated.

C.7.2 Estimation of the Cross-Correlation Functions

For twodigitised time series of size N, the unbiased estimates

for the sample cross-correlation functions* are defined by

N-1 .
1 _ N
ixyh)= . . t=20,1,2,.., m
prm— ) {(xt—x)[y(t+r) -v ]} (b)
t=1-1
‘ T=-1,-2,.., -m
N (C.148)
1§ {ty.v [x - %1} -
N-t t=1 t (t+1) (c)
- t=20,1,2,.., m
R _{1)=
VX
N-T
1 —_ —
N-T % Ty [x(y =% D (a)
t=1-1
T =-1,-2,.., -m

* They mey elso be called cross-coveriarnce functions after the mean of
each reccrd has been removed.
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It should be noted that the two cross-correlation functions R (T) and

Pl
Ryx(r) differ by the interchange of x, and y_ data values.

The sample cross~correlation function ny(T) may be normalized

to have values between +! and -1 by dividing by

N - 1 XN R
{1l =271 [ Zl(yt-y)]} .
t=

t=1 (C.149)
This defines a sample cross-ccrrelation coefficient
R_ (1)
Fal
p_ (1) = 34
ok Jee ) T
I Jx -x?1 [T )y -v)?
R Nyt (C.150)

T = 011'21 ey T

-~

which theoretically should satisfy -1 g 6;y(1{ 1, A similar formula

’”~
exists for o (1).
¥x

c.7.3 ross-Correlogram

A plot of pxy(r) as the ordinate against the lag, T, as the
abscissa, in which adjacent points are jointed by straight lines, is

referred to as a cross—correlogram.

Fig. C€.37 Typical cross-correlogram plot
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It should be noted that the plot will scmnetimes display sharp peaks which
indicate the existance of correlation between x(t) and y(t) for specific

time displacements.

C.7.3.1 Applications

Cross-correlograms have many important applications including

the following.-

It may be of interest to determine the time required for a
signal to pass through a given system. Assuming the system is linear,
a cross—correlogram measurement between the input and output may yield
such timevdelay information directly. As the output from the system is
displaced in time relative to the input, the cross-correlogram plot will
peak at that time displacement equal to the time required for.the signal

to pass through the system (Jenkins and Watts, 1968).
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CHAPTER D

WALL JETS
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D.1 PLANE TURBULENT WALL JETS

The term 'wall jet' was introduced by Glauert (1956) to des—
cribe the flow that develops when a jet, consisting of a £luid similar
to that of its surroundings, impinges tangentially (or at an angle) to a
plane surface and spreads out over the surface (the surrounding fluid is
assumed to be stationary). He studied such a flow in two and three
dimensions, and pointed out that it has featurés_common to both the .
free jet and the ordinary boundary layer. Thus, the spreading fluid is
retarded by the frictional resistance of the wall and the inner part of
the flow (Fig. D.1) may be expected to have a structural similarity to a
boundary layer, whereas entrainment of still fluid occurs near the outer
~edge of the flow which is therefore likely to resemble a free je; in

character.

Considering a plane jet of thickness d and with a uniform
vélocity UO issuing from a nozzle tangentially to a smooth flat surface .
which is submerged in a semi-finite expanse of the same fluid as shown
in Fig. D.1. This is known as 'classical wall jet'. In this figure,
X denotes the longitudinal distance from the efflux section. If experi-
mental observations of the distribution of the U velocity in the y-direction
at different x stations were made, it would be seen that at any x station,
the magnitude of U increases from zero at the wall to a maximum value of
Umax at y =8, it then decreases to zero at some large value of y. The
region from the wall to the maximum velocity level is known as the 'inner
-layer' or wall region or 'houndary layer' and the region above this is
generally known as the 'outer layer' or the 'free-mixing'region. These

two regions overlap at the point of maximum velocity.

From the profile of the velocity distribution curve (Fig. D.1)
it is evident that this type of flow is a class of shear flow because of the
spatial variation of the velocity in the direction nommal to bed. Turbulent
motion in shear flows is self-sustaining, in the sense that turbulence
arises as a consequence of shear and shear persists as a consequence of

turbulent fluctuations.

. Extensive investigation on wall jets has shown that the flow in
such a jet has a self-preserving form. This means that the variation of
any mean flow quantity over any plane could be expressed non-dimensionally

through scales of velocity and length. For a classical wail jet, the
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Fig. D.1 Definition sketch of plane turbulent wall jets

maximum velocity at each sectionléaxistaken as the 'Gelocity scale' and

the normal depth from the bed to the point where the velocity is half of
maximum velocity 63 (Fig. D.1) is taken as the length scale. For a wall
jet, the principal mean flow quantities of interest are the maximum
velocityléax,thelength scale §;, the inner layer 6, the total thickness

82 in addition to the wall shear T+ The existence of similarity reduces
the difficulty of treating the wall jet problem and a mathematical treatment
can be applied in terms of a characteristic velocity scale Upax @nd a length

scale §;, which are functions of x only.

D.1.1 Equation of Motion

In tensor notation, the equation of motion for momentum transfer

under steady-flow conditions is written as

au, v 3u

i 1 _ _ 3P 3 i, .3 —
at ¥ PYj x, T * o, (b)) + %, (-Pu; u) +F (D)



where
i,j.k = subscrirts in tensor notation
‘ ¥ = co-ordinate position
t = time varieble

= turbulent mean velocity

u = turbulent fluctuating velocity
p = mass density of fluid

B = dynamic viscosity

F = body force

P = pressure at any point

The nine products puiuj are referred to as the Reynolds stressés and the
terms a/axj(puiuj) are the partial derivatives of these products. The
subscripts indicate which component of a guantity is considered, and the
repetition of a subscript in a term indicates a summation to be carried
out over the possible components. For the case under consideration, if
the x-axis is teken as the axial direction of the jet, the y-axis normal
to the x-axis and in the direction of the height of the nozzle and the
z-axis as the third axis of the co-crdinate system orthogonal to the

other two axes; Eg. (D.l) can be vritten as

3U 3U ou 3U 1 8P o2y , 9*u 92U
st T Vax Y VS, TS T Tow VG e T
. (D.2)
G duv  dwe  F1
ax oy oz p
v v v v _ 1 op *v . 3*v 3%V,
e TV TVt T oy Y VGE et
— P ' ~ (D.3)
_(auv av? ovw, + 2
ox Jy 9z ' p
. 3 2 92w
. W e o 1 B_P_ o*W 92y \
St US Vi tiy, T T pE YV T T
' D.4)

— — -_ F

_(Buw +3vw " awz) + 3
ox By az P

U,V and W and u,v and v are the turbulent mean and fluctuating velocities

in the x,y and z co—oréinate direction and V is the kinematic viscosity.

The continuity equation is written as
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83U | BV oW

3x 3y = 3z 0 : : (B.5)

To apply Egs. (D.2), (D.2), (D.4) and (D.5) when analysing the

flow described in Fig. D.1, the following assumptions must be made.

(2) The mean flow velocity in the direction transverse to the main

flow is very small ccmpared with the main flow velocity.

(b) Changes in the guantities in the direction of main flow are
correspondingly slow with respect to those in the transverse

direction.
(c) The body force effects are negligible.

Since the mean flow is two-dimensional, W = 0,3/9z of any mean
quantity is zero; w = 0; vw = 0 and since the mean flow is steady
su/st =0 and.av/at = 0. Further, since the transverse extent of the fiow
is small, U is generally much larger than V over a large portion of the”
jet and the veloéity and stiress gradients in the y-direction are much
larger than those in the x-direction. With these considerations, the

equations of motion can be shown to reduce to the form

3y 3U 1 o 32y duv. ou?
: —_— — = - ——— v -— D -
u ox +V 3y p ox * ayz ay Sx (a)
.1 8p v
0 = - ; Ty‘ - '-a; (b) (D.6)
U . BV . '
ax +'3y =0 - (@

integrating (D.6b) with respect to y from y to a point located outside the

-jet, it can be concluded that
p = p - pv (D.7)

vhere p, is the pressure outside the jet. Differentiating the above

equation and substituting in (D.6a), it can be written that

3U du 1 dPe 32U 3w 3 — =, _
Usx*Vay T Traxt Vg T - ax - V) (D.8)

y* 8y ox
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The last term in the above eguaticn is smaller then the other terms and

could be neglected. The reduced equations of motion axe

U v _ _lde  ,3°U 3uv
u 2% + V. 5y S ax +v,6y2 57 (a)
: ' (D.9)
3U , 3V _
ax T3y : (b)

where P is simply written as p for convenience. In Eg. (D.%9a), the

last term can be rewritten as

. n_
— [=X("

—aw Ll m - Lt ~ (D.10)
p ey

ay- p 3y

where Ty standé for the‘tuxbulent shear stress, which is quite large
compared to the mean viscous shear stress (Schlichting, 1260). Further,
because in a large number of practical prchblems the pressure gradient in
the axial direction is negligibly small and also to study the jet undexr
relétivaly simplerconditions, it is assumed that dP/dx = 0. The equaticns
of motion of the plane turbulent wall jet with a zero pressure gradient

in the axial direction will reduce to the following form

ST
U 3y _'_14dp 30 1 "t
UB +v oy p dx oy*? +D oy (a)
(D.11)
9y . ov
_— = = 0 (b)

D.1.2 Similarity Analysis of Ecuztions of Motion

The investigations of Forthmann (1236), Glauert (1956) and
Eichebrenner and Dumargue (1962) have shown that, strictly speaking, the
velocity profiles in the fully-developed region of a plane turbulent
wall jet cannot be similar; but, if a small region near the boundary is
neglected, the velocity distribution is indeed similar. This means that

a curve f£(n) defined as



£EMm) = U/Umax (a)
where

(D.12)
n = y/8;

(b)

exists whose co-ordinates are constant and independent of the history of

the flow. "LlInaxand 61 are normally assumed to be of the following simple
form

Y X (@)
(D.13)
(0)

Bzsed on experimental cbservations and also from a dimensional consideration

2 - .1
Tt/pUmax g(n) (D.14)

Based on the above assumptions, the individual terms of Eqg. (D.11) can be
evaluated as follows ‘

U '—'-Umaxf ()

(D.15)
By differentiating Eq. (D.15), it can be concluded that
_o_'(_J_'= E—(U £) = f.d_g‘_ax.;. .‘i?..a_n__iifi ;
3x 3% max dx max dn 38; dx
(D.16)
U - y n
ol A, £ -U ] ] — [ LSOO
X . FUma.x maxf 5;° 61 .ﬂi‘nax ga}f &y !
where f' = @af/dn;8;' = a@8i1/dx; U' = AU /dx. Hence
max maX
U2t
U _ 142 max’ s .
U ox —maxtxjnaf 8 _ nff (D.17)

In orﬁer to evaluate the second term in relationship (D.1la), an expression

for V can be obtained by integrating the continuity egquation
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- WV os = - 8y
v = £ 5y Vg I axd
y U &'
- max " _Ug'f
£ 5 nE U5 gy
v Y
< fl - ~
=Umax61' f -———21 dy - Umatxj féy (D.18)
o

n n
=Umax61 1 f nf'dn - Uma)'csl f fdn
o o ’

= T -
Uaxd1'(nE f fdn)-u__ & f fdn

The partial derivative of U with respect to is
P B

| u_f£'
8 _ 3 _(yg = y g L o mEX (D.19)
oY Y max max oy 1
Hence
3U Ufﬁl' n n
v o max’ | (nEE - £ f fan}-y U ‘£’ f £fdn {D.20)
oy 3] o max max

The third term on the right-hand side of Eg. (D.lla) can be written as

2 ]
P S L3 g = ¢ & Bax’ (D.21)
p oy p 3y ‘max max&n  dy 81 )

where g' = dg/dn. The second term on the right~hand sicde of (D.lla) may

be written as

92U | 3 Unf'’ _ max .y
Vg T Vate) T gt (D.22)

where £" = @ £f/dn2. Substituting (D.17), (D.20), (D.21) and (D.22) in
(D.11a) leads to the following reiationship

61[rjna;{f2 . T] Vf"

max o max



For most of the wall jet problems of practical interestJJa£1/ Vis
. m

large and hence the last term in Eg. (D.23) can be neglectcd. From the

assumptions made in (D.13), it follows that

|
f_l_xtfnsxx 1 |
U ' (a)
max .
(D.24)
v L 31
61" = X » (b)

and in this case, the Eq. (D.23) will result ing =

D.1.3 Integral Momentum Equation

The equation of motion may be written in the following form

dU dU 18 13 dU
U + Vi = = = — 4 — — — +
ax Y oax Tpoay Hay T T (a)
or (D.25)
3U dU 18 . 13T
—_— — = _-——F - —
U Y v 3y S ax T o ay (b)

where 1 is the total stress which is the sum of the viscous stress and
the apparent stress. Multiplying Eq. (D.25b) by p and integrating with
respect toy fromy = 0 to y = » leads to

[--4 [ -]

pfu-ggaynfva—u ;51 = [t =, (.26
o O b4 [o] o

where To is the wall shear stress. The individual terms of the above
equation are elvaluated here, Using the Liebnitz rule* (Wylie, 1966),

the first term can be written as

39U = 3 (ow? =y 8
pIUady-—’:Iax(pU)dy— dxj (D.27)
o o o
Using the continuity equation, the second term may be written as
i b(t)
According to the Leibnitz rule, if F(t) = [ ¢(x,t)dx, where a and b
are differentiable functions of t and where ${§2t) and 3$i§§ﬁl are con-
tinuous in x and t, then
b (t)
= | T ax + ¢[p(t),t] XL _ glan), £] B

a(t)

[
(V]
o
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of vrdy = p(le f
© | ° (D.28)
« 3y a r.
=h Umg;dy = % EE'I pu*dy
o
o
Hence Eg. (D.26) can be written in the following form
, & a a r ..
v feva s a g fova = Sl = mx 0.
o o o

However if U = U ,f(n) and dy=¢§; dn as before, the above relatlonshlp
max

may be written as

U? £2 §;dn = - - ({a)
] pUZ £ (n) §1dn T,
°© (D.30)
or .
2 = é_— 2 = -
F el [ oppl = -, »

From the assumptions of (D.13), it can be concluded that

U §) = X(2p+q) ‘ (a)
max
(D.31)
2ptg-1 :

dx ‘max .
If it is assumed that

T« xé _ (p.32)

o
Then, from Eg. (D.30b) it follows that

2p + g-1 = 4 (D.33)
With g being equal to 1, the above relationship will reduce to

2 = 4 | (D.34)

However most experimental workers such as Narasimha, Narayan and Parthasarathy
(1973) correlate U ax::md x by the use of a power law expression of the
m

form
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U
Umax= B, (/) (D.35)

o

Values quoted for the constants in Eg. (D.35) often vary widely, p ranges
from -0.49 to -0.62, and A1 from about 3 to 7. However, if p is assumed
to be -0.5, then from relationship (D.34), it immediately follows that
4 = -1, Tnis means that Todecreases inversely with x. Thus for the

classical plane turbulent wall jet, it follows that

U = 1/vx (a)

max

8§, = x : (b) )(D.36)
T, = 1/x : (c)

D.1.4 Dimensionzl Considerations

In presenting experimental results on turbulent wall jets most
researchers such as Bradshaw and Gee (1962) and Kohan (1969) have demon-
strated their results by using the slot height d and jet exit velocity Uo
as well as the jet momentum flux Mj from the nozzle. If the momentum
flux Mj which is zpproximately preserved (Rajaratnam, 1976) is accepted
as the main parameter in this problem, for a fully-developed wall jet the

following relationships can be written

= £ . (
Umax 1(MJ' pr %,V a)
To = f3 (Mj' p, %X,V) (c)

Application of the Buckingham m theorem gives the following results

U /YM./px = g,(R.) (a)

max § 17y

) = (R.) (D.38)
l/x gz f (b)

To/(Mj/x) = gB(Rj) {c)



135

where S.+95 and g, are functions of the nozzle Reynolds number (Reynolds

nubmer of the jet) defined as

Rj = Udd/v (D.32)

Experimental results have generally indicated that if R. is greater than
10% , the variation of gl(Rj), gZ(Rj) and g3(Rj) with R. is small and in

this case the zbove relationships reduce to the following simpler forms

U /0 = C,/vx/d (a)

max O 1

§1 = Cyx | ' (b) }(p.40)
ce = T, /(pU/2) = Cy/(x/d) (e)

where cf is called a skin-friction coefficient.

D.1.5 Experimental Results

The first experimental study of a plane turbulent wall jet
arppears to have been made by Forthmann (1936) . His cbservations on
~the velocity distributions indicated that the flow becomes fully established
for x greater than sbout 154. Further experiments on the plane wall jets
have been perfommed by Zerbe and Selna (1946), Sigalla (1958), Schwarz an
Cosart (1861) and Myers, Schauver and Eustis (1863). For wall jets, in
general, the velocity distribution in the inner layer is better described

by a power law of the form

n _
= (y/6) (D.41)
max

ala

vhere n, like § and gax'is a function of x. For the classical wall jet,
Forthmann (1236) found that the velocity distribution in the boundary laver
follows the one-seventh pover law (n=1/7), és in the Blasius law. However,
experimental observations of Schwarz and Cosart (1961) and Myers et al.
(1963) have shown that with the Reynolds number, R,, in the range 10" to
105, the value of the exponent is closer to 1/14. jFurther Myers et al.

(1963) found that the logarithmic law is valid in the form



136

u/u, = 5.6 loglyU,/v) + 4.9 (D.42)
with U, = Vro/p, whereas Mathieu and Thailland (1963) have reported diffe-
rent walues for the coefficients in Eq. (D.42) (4.45 instead of 5.6, and
10.3 instead of 4.9).

The velocity distribution of the entire wall jet has been found
to be similar by Sigalla (1968), Schwarz and Cosart (1961) and Myers et al.
(1963) , thereby confirming the earlier observations of Forthmann (1936).

The co-ordinates of the similarity curve based on the available experimental
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Fig. D.2

data given in Table D.1. Verhoff (1963) derived an empirical relationship

to describe the similarity curve which he gave as

177

1.48n°" "[1 - er£(0.68n)] (D.43)

cla

max

where erf is the 'error function' defined by

erf(n) = [ et s (D.44)

2
/7 o
The portion of the curve in Fig. D.2, in which f(n) increases from zero

to unity , resembles the inner layer .



n £4n)
 0.00 0.000
0.02 0.790
0.05 0.200
Q.08 0.950
0.10 Q.80
0.10 0.280
_0.16 1,000
0.20 0.995
0.30 0.950
0.40 0.820
0.50 0.£25
0.60 G.760
0.70 0.690
0.80 0.625
0.90 0.560
1.00 0.500
1.10 0.430
1.20 C.205
1.30 0.360
1.40 0.3i0
1.50 0,250
1.60 0.220
1.70 0.170
1.80 0.125
2.00 0.055
2.10 0.030
2.20 0.005
2.25 0.000

Teble D.1 Coordinates for the velocity-distribution curve of the

classical plane turhulent wall jet

As has already been described, the velocity profile of a wall jet
is divided into two regions of imner and outer layers, separated by the
position a2t which the correlation uv = 0. The investigations of Eskinazi
and Yeh (1956) showed that for asymmetrical velocity profiles, the posi-
tions of the zeroc value of the flucttuating correlation uv is not at the
pbiﬁt of meximum velocity. Fer the wall jet, this phenomenon was indica-
. ted by Methieu (1959). However, since the Getermination of this position
is impractical for mean flow considerations, the location of the maximum

velocity is norxmally chosen as the dividing point.
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The experimental results of Myer et al. (1963), which are available
in tabular fcrm, are shown platted in Fig. D.3 as (Uo/gaiz versus x/d,
where x is measured from a virtual origin not generally coincident with

the position of the slot. Rajaratnam (1965) reported that the virtual
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Fig. D.3 Variation of the velocity scale for plane wall jets

origin is located roughly 10d behind the nozzle. From the Fig. D.3

it can be seen that most of the points are well described by straight
lines passing through the (centre of the) nozzle. Most of the
available observations on the decay of the velocity scale are reproduced
in Fig. D.4 from Rajaratnam and Subraman&a (1967) and the average

curve is well described by the equation

u/u = 3.5/¥%/4 (D.45)
max ©

0
1.20 10 20 30 40 50 GO 70 80 90 100 110 12 130 ﬂqz
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Fig. D.4 Correlation of the velocity scale for plane wall jets

for x/d at least up to 100. The Reynolds number of the jet has not been

found to influence the above relationship to any appreciable extent.



Some of the resulie regaréing the length scale are shown in
Fig. D.5. [Most experimentzl workers such as Kohan (1569) correlate

83 and x by the use of a power law expression of the form

(o]
(™

= B,/ " (D. 46)

ol

In.Eq. (D.46) % is measured from & virtual origin (it is normally assumed
that the virtuvel origin is located 10d behind the nozzle). Most
investigators have assumed t to be equal to 1 and 2, to be equal to 0.068.

In this case, the length scale can be presented by the following simple
relationship ' .

5, = 0.068x

or

81/a = 0.68 + 0.068 x/d ' (b) N
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Fig. D.5 Growth of the length scale for plane wall jets

The coefficient in Eg. (D.47a) has been found to have slichtly different
values by other investicators. Rajaratnam (1965) expressed a view that
the Reynolds nurber of the jet would not significantly influence the

reletionship (D.46). However a subseguent investigation by Kohn (1969)

led to the following expréssion for A2

A, = (-4.05% 0.61)10-7Rj- + 0.08 (D.48)
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It has been found (Narasimha, Narayan and Farthasarathy, 1973}, that
6 = 0.16 83 (D.49)
and that the upper boundary of the jet (Fig. D.1) is fixed approximately at
82 = 2.250; (D.50)

Dimensional ana analytical considerations predicted that To « 1/x.
"The variation of the skin-friction coefficient Ce defined as (D.40c) could

be expressed by the equation (Mayer et al. 1963)

B o _ 0.20

¢ T puo’/z - (x/d)(Uod/V)l/lz

{(D.51)

The results of Sigalla (1958) on To’ obtained with the Preston tube, are
known to be about 15% less than the results of Mayer et al. (1963).

However, Sigalla recommended the empirical eguation

T
c - (o) = 0.0565 (D. 52)

pu 2/2 (W 6/v) 174
max max

H=-

If Q is the forward flow per unit width of the wall jet, the

following can be written

Q0 = [ ugy (D.53)

By using relationships (D.12a) and (D.12b), the above equation may be

written as

[--]

= §,f £a .
9 U 1£fn | (D.54)

Using the relationships developed for the velocity and length scales, and
the curve for the velocity distribution, the value of ( can be calculated

at any point.
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D.2 PLANE TURBULENT FREE JET AND WALL JET

The aim of this section is to compare the plane turbulent free
jet diffusing in an infinite stagnant ambient environment with the corres-—
ronding plane turbulent wall jet on a smooth boundary with regard to the
three important characteristics, namely the velocity distributicn and the

variation of the velocity’and_ length scales, in the region of developed

flow.
" -~
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Fig. D.6 The plane free jet and wéll jet
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D.2.1 .The rFree Jet

Figure D.6 shows a free jet of thickness 24 with an almost
uniform velocity Uo diffusing in an infinite stagnant surrounding. It
has been found (Yevdjevich, 1966) that the length of the potential core
is about 11.8 to 13.24. If x is the longitudinal distance from the nozzle,
for Eyd greater than approximately 12, the transverse mean velocity distri-
bution is similar and is satisfactorily described by the theoretical
solutions of Tollmien (1933) and Gortler (1942). The velocity scale for
the similarity profile is the maximum velocityx%axgt the section and the

length scale is the transverse distance §; between the planes where‘fhe

mean velocities are respectively equal toU and U /2 s
: max max
-8
(ABSCISSA FOR CURVES 4)%——3
1-
1 2.
e e R
—— Crrve 1 (Gortler, 1942)
09 -08
meme cueve 2 (Tollzien, 2933)
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” a7 seessasescumve 4 free eiring regicn enly a7
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oE 08 (o}

NN .

o (s34 as
04 a4
a3 03
02 a2
03] a1
00 00

0o as 10 1.5 20 25

(ABSCISSA FOR CURVES 1,2,3)y/51

Fig. D.7

The velocity distributions given by Tollmien (1933) and Gortler
(1942) are shown in Fig. D.7, where the dimensionless abscissa is y/51. Y

being the normal distance from the axis of the jet.
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D.2.2 The Wall Jet

Consicdering a jet, consisting of a fluid similar to that of its
surroundings, impinges tangentially to a plane surface and spreads over |
the surface (the surrounding £luiéd is assumed to be stationary). As has
already been defined, the mean velocity distribution is essentially similar.

"From Fig. D.7, it can be seen thaf, except in the boundary layer region
{i.e. y < §) and a very small portion of the outer free mixing region
(i.e. y.>§), the wall jet profile agrees well with that of the free jet,

especially with the curve of Tollmien.

' ) It is intexresting to compare the free jet curve with the free mixing
region portion of the wall jet. The abscissa of the free mixing region
curve of the wall jet is(y-8Y(6;-8) and the ordinate is U/Umax' Knowing that
6 = 0.168; and by using Table D.1, the co-ordinates of the free mixing
region curve of the plane wall jet can easily be obtained (Table D.2).

This curve is plottéd in Fig. D.7, and it can be seen that it is slightly
di fferent from the others, however for practical purposes, this difference

could possibly be neglected.
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v 25 30 <5 50 60 70 BO S0 100
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Fig. D.8

The variations in the length scale as'given by Sigalla (1958),
Schwarz and Cosart (1961), Myers et al;(1963) are plotted in Fig. D.B.
It éan be seen that the curve of Schwarz and Cosart (1961) is a good
average for the wall jet data. Based on this, it can be seen that the
length scé.le 87 of ﬁme wall jet grows at 0.7 times the rate of that of
the free jef. ‘



Table D.2

-y =%

" T E-8 | £

§ = 0.166,

0.000 1.000
0.048 -0.995
0.167 0.950
0.286 0.890
0.405 0.825
0.524 0.760
0.643 0.690
0.762 0.625
0.881 0.560
1.000 0.500
1.119 0.450
1.238 ‘0.405
1.357 0.360
1.476 0.310
1.595 . 0.260
1.714 0.220
1.833 0.170
1.952 0.125
2.071 0.085
2.180 0.055
2.309 0.030
2.429 0.005
2.488 0.00

Co-ordinates for the velocity-distribution of the free

mixing region of the wall jet

14
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CHAPTER E

EXPERIMENTAL SET-UP

AND MEASURING TECHNIQUES
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E.1 GENERAL

The experimental work that was undertaken in the study of a
supercritical water flow deflected by a plane, smooth, vertical transverse
wall is described in this chapter. The apparatus and the procedure
used for prodﬁcing the fast flow is described in detail first. The methods
used to measure the water flow rate, mean pressure field, mean flow
direction and the mean velocity profile and to record the complicated wave
patterns occurring at the retaining wall is also described. Finally, the
facilities for and the procedure used in the analysis of the experimgntal
measurements, together with an outline of the experimental programme per-—
formed are given in this chapter. However, before describing the details
of the experimental apparatus and the different measuring technigues, scme

basic uncertainties in the measurements must be defined.
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E.2 TOLERANCE ON MEASUREMENT

All physical measurements are inaccurate to some degree and it
is therefore essential that every measurement should be accompanied by an

assessment of the uncertainty involved.
E.2.1 Uncertainty

Uncertainty applies to a measurement rather than an instrument.
The total uncertainty of a weasurement is defined as the range in which
the true value is likely to lie, at a stated level of probability.. Thus,
the uncertainty of a measurement is not & fixed value but a function of
the level of confidence with which the uncertainty of the measurement is
qﬁoted, i.e. the higher the confidence level, the greater the uncertainty.
The level most often used in industry is 95 perxrcent and this figure has

been adopted in this investigation.

E.2.1.1 Categories of Uncertainties

Basically there are three types of uncertainty which must be

considered.
(a) Spurious uncertainties (human erros and instrument malfunctions)
(b) Random uncertainties (experimental and reading uncertainties)

(c) Systematic uncertainties (which may be either constant or

variable) .

Spurxious uncertainties are uncertainties which can invalidate
a measurement. Such uncertainties cannot be incorporated into a statis-
tical analysis and the suspect measurement must be discared. During
experiments steps should be taken to avoid such uncertainties or to

recognize them and discarxd the results.

Random uncertainties are uncertainties that affect the ability
to reproduce measurements. The propagation of uncertainties is based
upon the standard deviation of the uncertainties. The standard deviation
of a set of n measurements of a quantity y under steady conditions may be

estimated from the following egquation

n —
U7 L
s ] i=t
Y (n-1) (E.1)
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Fig. E.1 A simple example of random and systematic effects
where
E’ = arithmetic mean of the n measurements of the variable Y
yi = value obtained by the ith measurement of the variable Y
n

= total number of measurements of 4.

The relative standard deviation Sé equals sy divided by the observed mean.

Hence

n —
- 2
DNCATR

N I B
2 y—[ = =2

The mean value will also be subject to a random uncertainty. The

standard deviation of the mean Sg' is given by
s- = s //n (E.3)
4 y/

For practical purposes, it can be assumed that the distribution of the
uncertainties in a set of measurements under steady conditions can be

adequately approximated by a normal distribution. In this case, the



149

uncertainty of the mean is twice Sg—at the 95% confidence level (assuming
that n is a fairly large number). However, more correctly, the uncertainty
is a function of both the number of readings, n, and the confidence level,

the uncertainty of the mean can be expressed (Hayward, 1977) as

A =
m

s /Vn
,tc _l// n (E.4)
where tc is the value of the mathematical function known as Student <
which is dependent on both the confidence level and the number of readings.
For the 95% confidence level, some typical values for'tc are given in

Table E.1.

n 4 8 10 12 20 ®

£, 3.148 | 2.36 2.26 2.20 2.09 1.96
zc//H 1.074 | 0.834 0.715 | 0.635 | 0.467 0
Table E.1 Values of Ic for a 95% confidence level

It can be seen from the 2bove table that the value of tc increases quite
rapidly when n is small. If an infinite number of readings are taken,

the random uncertainty of the mean beccmes zero.

. Systematic uncertainties are uncertainties which cannot be
reduced by increasing the number of measurements whilst the equipment and
experimental conditions remain unchanged. Whenevér there is evidence of
a systematic uncertainty of known sign, the mean uncertainty'should be
added to (or subtracted from) the measurement results. In deciding whether
‘an uncertainty is to be regarded as random or systematic, the true
criterion should be whether the values assigned to the uncertainty were
derived from a statistical analysis of a number of measurements or whether
-1t was only possible to estimate limiting values on a non-statistical basis.
¥Pollowing on from this the random and systematic uncertainties should be .
treated separately and the overall uncertainty of measurements should have

a random and systematic component.

E.2.2 Repeatability

Repeatability, unlike uncertainty, which is a property of a measure-
ment,is a property of an instrument. Its British Standard definition (B.S.I.,
1975), is "“the ability of a measuring instrument to give identical indi-

cations, or responses, for repeated applications of the same value of
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the measured quantity under stated conditions of use". This means that
if a typical rezding of the instrument stands at 95% of being within *R
of the mean of an infinite number of repeatedrealings, then the repeatability

of the instrument is R.

E.2.3 Combination of Uncertainties

The overall uncertainty arises fram several contributary uncer-
tainties, which may themselves be composite uncertainties. The total
uncertainty is the square root of the sum of squares or 'root-sum-squaring'

of the separate percentage uncertainties.

when the uncertainty in a result ¢ is desired, where ¢ =

w(vl,vz, ces vh), then a very good approximation is given by

_ oY 2 oY 5 oY 2 oY W Y2 X
Ww = [ 5;—'w1) + (g W)+ (g Mg) + ...+ (53—' n! ]
1 2 3 n
(E.5)
where wi,wz, <o W, axe the uncertainty intefvals in vl'V2' <ot Voo

respectively and ww is the uncertainty of the result ¢y . The above
procedure for estimating uncertainties was proposed by Kline and

McClintock (1953) and is known as the ‘'second power equation'.

E.2.4 Accuracy

The overall uncertainty of a measurement arises from the com-
bined effect of several separate sources of uncertainty. The accuracy
of a measurement is taken as the square root of the sum of the sguares of

repeatability and other uncertainties.

E.2.5 Method of least Squares

» The least squares method (often abbreviated as l.s.m.) states
that the most probable value of any observed quantity is such that the
sum of the squares of the deviations of the observations from this value

is minimum. Further details of this are given in Appendix III.



E.3 THE LABORATORY ARRANGEMENT

E.3.1 General Layout

The general layout of the laboratory equipment is shown in
Plate IV. The main features of the equipment used in this experimental
work were a smooth-steep chute of 180 mm width, a smooth horizontal
‘channel and a smooth retaining wall. The geometry of the chute approach
was improved on the sides by fitting streamlined plates upstream of the
leading edges of the chute‘(Eig. E.2). The channel was made of perspex
of 16 mm thickness and 180 mm width. The retaining wall was made of a
steel plate of 5 mm thickness. The side wall was made of 3 mm aluminium
sheet (in order to provide a smooth surface). The pointgauge (Plate IV)
was supported on a carriage such that a depth reading could be taken at

any point in the channel.

E.3.2 Supply and Disposal of Water

The main supply of water in the hydraulics laboratory consists
of a self-contained circuit in which the water from the sump is pumped
into several constant head tanks and then distributed to the models,
flumes and equipment of the laboratory. The. water was supplied to the
reservoir from one of the medium head tanks of the laboratory which main-

“tained a water surface level of approximately 13 m above the reservoir.

The reservoir measured 2.3 m long by 1.2m width and was 0.9 m
in height. A 100 mm durapipe supplied water to the reservoir and distri-
buted through a manifold. A butterfly control valve was fitted 2 m
upstream of the pipe outlet in the reservoir. A honeycomb baffle
(Fig. E.2) as well as wire grids were positioned across the reservoir
near the pipe outlet to help dissipate disturbances in the flow after it
leaves the pipe outlet. Flow out of the model was directed through a

drain channel to an underground sump.

E.3.3 Control of Flow to the Chute

When undertaking experimental work, a researcher should be

able to reproduce a particular experiment to sufficient accuracy. Tb

151



PLATE 1V

GENERAL VIEW OF MODEL
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achieve this, the water levels in the reservoir were controlled and
measured by means of several point gauges which were fixed vertically to
the interior face of the reservoir, close to butterfly valve (Fig. E.2).
Each point gauge corresponded toa certain water level in the reservoir

and hence to a certain experiment. The reservoir area was relatively

large so as to dissipate to some extent any disturbances caused by the
opening and shutting of the other valves. However, during the initial
stages of the investigation, it was noticed that controlling the water
level in the tank by means of the butterfly valve was tedious and time-
consuming; it was also noticed that during lengthy experiments, the

water level in the reservoir unexpectedly dropped or increased slightly.

To combat this difficulty, fine adjustment of the water level in the
reservoir was made possible by connecting 5 gate valves to the vertical
side of the reservoir, near the butterfly valve (Plate V). As will be
explained in the next sections, it was sometimes necessary to stop the
water flow over the chuteinstantaneously} this was not possible by merely
closing the valve of the water supply. To provide for this, gate valves
A, B and C were fixed at the lowest part of the reservoir. By opening all
the gate valves, the water flow over the chute could be stopped in a very

short time.

E.3.4. Water Flow Rate Measurements

The discharge from the model was measured volumetrically over
a measured time interval with the water being collected in an underfloox
volumetric tank, the plan area of which was 41.52 m*. With the aid of the
two air operated butterfly valves which opened and closed simultaneously,
water flow was cut off from the underfloor tank and discharged into the
laboratory sump. The water levels in the underfloor tank were measured
by a meﬁéred rod provided with electric cells. A signal indicated the
water level in the tank. This signal was only activated when a direct
current electric circuit was closed by the point gauge tip touching the
water surface. The device was mounted on a tripod and could read water

level changes within #0.1 wum.

The water outflow from the model generated irregular waves on the
water surface in the undexfloor tank. A smooth vertical plastic pipe
1.8 m long, of 8 mm thickness and 153 mm internal diameter enclosed the

point gauge and suppressed the iIrregular disturbances. Water in the
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underfloor tank entered the pipe via a 20 mm gap at its lower end.

The time of the discharge was measured by a stop-watch with the measure-
ment having an uncertainty of +0.1 seconds. For a given dischafge, the
discharge measurement was repeated at least three times and the arith-
metic mean of the three measurements was considered the reliable value.

The total uncertainty in discharge measurement was within #+1%.

E.3.4.1 Calibration of the Spillway Crest

Many experimental formulae for the discharge of an overflow
spillway have been developed. Most of the formulae can be expressed in

the fellowing general form

Q
C3 < S (&)
d %-Y2g L313/2 ‘ :
or (E.06)
_ 2 = 3/2
Q = 3 Zg 3 L Hl (b)

in which Q is the discharge over the spillway, 3 is the discharge coef-

ficient, L is the length of the weir crest (normal to the flow direction),
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g is the gravitational acceleration and ﬁlis the total upstream energy head

over the chute crest, including the velocity head in the approach channel.
Often it is not possible to measure the energy head Hl directly and it is
therefore a common practice to relate the discharge to the upstreamAwater

level over the crest, H. 1In this case, Eq. (E.6b) can be written as

_ 2 o= . 3/2 '
Q = €5 % 3 2g LH _ | (E.7)
where c_ is a correction coefficient which allows for neglecting the
velocity head. If an overall discharge coefficient Cd is substituted
for the product c_c —JF_ L, Eq. (E.7) may be written in terms of the

dv
head over the splllway crest as

Q = C_ H (E.8)

The measured values of Q and H are given in Table E.Z2.



H Q

mm cm® /sed

115.0 13269

90.0 8956
58.0 | 4471
46.5 | 3169
36.5 | 2189
88.5 | 8760
76.0 6898
66.6 | 5575
54.0 | 4014

125.2 15300
105.0 | 11507

12.3 405 -~
23.7 1123
Table E.2

A simple linear regression with no constant and with dependent
variable Q and independent variable Hl's gave Cy4 =10.65 (Q in cm’/sec
and H in mm), while the standard erxor of Cd was 0.07 with the Pearson

product-moment correlation coefficlent r = 0.999 (Fig- E.3).
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E.4 MEASUREMENT OFtMEAN FLOW PROPERTIES

In dealing with the fluctuatiﬁg quantities of turbulent flows,
it becomes necessary to employ a type of statistical epproach. The
mean time average of a quantity B is defined as

t+7T

Bdt (£.9)
J

B =

H|

where T is the interval over which the average is carried cut and is large
enough to render the guantity E'independent of time.  Thus, the mean time

average represents the well-ordered part of the flow.

However, when attempting to measure mean-flow quantities in a
fluctuating flow, the measuring systems (pressure transducers, liquid—
filled mancmeters, etc.) may not indicate the true mean value. When con-
sidering the causes of uncertainty, it is necessary to consider the system
' as a whole and take into account the measuring system qualities such as

freguency response limitations, departures from linearity etc.

E.4.1 'The Effect of Fluctuations

‘The instruments used to measure mean values in turbulent flows
are often those developed for essentially steady situaticns such as strain
. gauges, meanometers, pitot tubes etec. The response’of these instruments
is slow enouch to provide steady readings, independent of the continugl
fluctuations. In using Stcﬁ instruments for tu;ﬁulent,flows, it is
assumed, often tacitly, that the effect of the fluctuations on the indi-
cated mean value is negligible, either because the fluctuations are small,
or because their effects are averaged correctly by the instrument. 7
Considering an intrument for whiéh the relationship between_ the output (or
the quantity being measured), S, and the input (or the reading), I, can ‘

be expressed in the form
S = X1I : - (E.10)

where K is the calibration factor, which is very nearly constant (the
operation of the instrument can be made simpler by treating K as if it
.were a constant). The instrument response to an input of (E +4) in

which { is the fluctuating part will be S + 4. From Eq. (E.10), it



follows that
S = XTI ‘ C{E.11)

Such an instrument will recorxrd a simple time average, and calibration can

be accomplished using static tests.:

In the above relationships, it has been assumed, for convenience
that K is a constant for all values of the input I. However, there is a
disadvantage, since, at those points where the true value of K differs
from the assumed (constant) value, an error will be introduced.  Such an
errcr is termed a non-linearity error. When the response is non-linear,
the average value reéistered will cortain a contribution from fluctuations.
If thevrelationship between the input and the outpuﬁ is assumed to be of

the following form
S = KI _ (E.12)

in which K and n ére constant, then the relationship between the fluctua-

ting input and the output will be

S+4 = x@T+O" = kT + 57 (E.13)
or

= . _ o, =0 4, n(-1) 4z _ nln-1) (n-2) £°

S+4=XKTI " [1 +n T+ ———§—~(f + —7—5173————-(%3 + ...

(E.14)

On averaging the above relationship and using the fact that 4L =0 and

ol

I

<<1, Eq. (E.14) can be written as

— ;2
S=KkT7[1 + 4n(n-1) =] (E.15)
I

Here, if very high precision is sought in determination of the mean flow
quantity, the static calibration is insufficient. In this case, either
a dynamic calibration or a theoretical correction is required (Reynolds,

1874).
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E.5 MANOMETERS

In most practical circumstances for incompressible flow, and
very often for compressible flow, the velocity, static and total pressures
are measured with manometers, in which. the pressure is balanced by the

weight of a column of liquid of known density.

E.5.1 Calibration of Manometers

Manometers using gauging fluid of known density such as water
do not reguire calibration when cperated with the tubes held vertical,
their accuracy being dependent mainly on the precision with which the
liguid heights can be read. In this investigation, the manometers were

not calibrated.

E.5.2 Lag in Leads

When making pressure-probe measurements in flow conditions which
are essentially steady, one of the main considerations in choosing compo-
nents for the manometer system is that of lag in obtaining steady readings
after the changes in flow conditions or the location or attitude of the
pressure procbe. After any change, a finite time lapses before the new
value is registered by the indicating or recording system. In general,
in the case of water-filled manometers, water must flow in or out of the
probe orifices. It is, therefore, usuzlly an advantage to keep the liquid
volume of the system as small as possible in order to minimise the time

taken for these processes to be completed.

E.5.3 System Response

in general, water manometers having an internal diameter of
approximately 10 mm can only respond to frequencies which are less than

2 Hz and are seldom non-linear to a significant extent.

The influence of stream turbulence on the performance of pressure
probes is of great importance. In this case, it is also necessary to
examine the response of the system to fluctuating pressures and to con-
sider whether a true mean pressure is registered by the manometer. If a

length of tubing having a restricted inlet at the pressure-sensing end and
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at the other end a manometer is considered, it can be said that a fluc-
tuating external pressure at the inlet will cause a flow in and out of the
inlet tube and a fluctuating pressure will also occur within the system.
If the relationships which govern the exchange of energy from pressure to
kinetic energy and then back to pressure are completely linear, then the
mean level of pressure detected by the pressure-measuring device would .
equal that at the inlet to the systemn. Actual systems may not behave in

this way for the following reasons

(a) At the change of section, the geometry of the section imposes
a rectification of the pressure pulse. This effect may occur at any

change of section throughout the system.

(b) The transfar of water along the entrance tube is only a linear
function of the pressure difference across it when the flow in the tube is
laminar. Non-linearities occur when it is turbulent or quickly changing,
and further non—linearities are introduced for all conditions if the tube

is short when it acts in some ways like an orifice.

(c) Non-linear elastic properties of the flexible tubing introduce a

rectification of the pressure pulse.

(d) If a liquid manometer is used, there is the additional possibility of
error being generated by the behaviour of the manometer itself. | The water
column of a manometer, which has an internal diameter of approximately
10 mm, responds to pressure fluctuations as a damped oscillatory system
with a single degree of freedom, its natural frequency usually being about
1 Hz. If large amplitude oscillations of the liguid column are excited,
large displacement of liquid throughout the system will result in the
éggfavation of errors arising from (a), (b) and (c) above; in addition,
parts of the liquid system itself may cause rectification of the oscillating
liquid flow. If a pressure transducer is used, its linearity and that of

the associated electrical system are important.

In spite of all the possibilities listed above, satisfactory
accuracies can usually be obtained from pressure probes when measuring mean
flow quantities in most fluctuating flows, provided that the probe proper-
ties, such as sensitivity to flow direction, are taken into account. In
most situations, the turbulent intensities are not greater than 20 per cent,
which means that the effects of (b) and (c) can usually be ignored (Bryer‘
and Pankhurst, 1971). In addition, the effects of (a) and (d) can be
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largely overcome by introducing a length of narrow-bore capillary tubing
at a positicn as close to the probe-sensing orifice as.possibie. The
demping produced by the capillary tube should then be large enough to
ensure that any rectification effect is small compared with the resistance

of the tube to flow.

E.5.4 Manometer Boards

Thirty individual glass manometers of 10 mm internal diameter
were made (Plate VI), as it was desirable for simplicity and to save
time to be able to measure a large number of pressures simultaneously.
Flexible plastic tubing, 2.5 m long was used to connect the pressure-sensing
probes with the manometers. The plastic tubing was of 3 mm bore and trans—.

parent, so that air blockages could be readily seen.

An elaborate flushing arrangement was made for each manometer.
It consisted of a T-piece, with each end connected to soft transparent
plastic tube 100 mm in length. Each soft tube had a clip; the clips
were used for different purposes such as filling the manomeﬁer with
water, £illing the connecting tube to the pressure-sensing probe with
water, disconnecting the manometer system from the flushing water and for
removing air whenever it interfered with the pressure measurement.. The ends
{(c) of all the manometers (Fig. E.4) were connected to a common pipe
with a valve containing the flushing water which could be supplied at a

strong pressure (Plate VII).

In the initial stage of experimentation, it was noticed that
the plastic tubes containing water of the hydraulic laboratory went
dark after a day or two unless the water was emptied after the experi-
ment. To combat this problem, after working with the manometers, the
water inside the system was discharged by means of an inflator which

was used as a pump.



PLATE VI

FRONT VIEW OF THE MANOMETER BOARD
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Schematic representation ¢f a manometer with the flushing
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PLATE VII REAR VIEW OF THE MANOMETER BOARD
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E.6 MEAN VELOCITY FIELD MEASUREMENTS

A1l the velocity profile measurements were made by.meané of
a pitot-static tube with the static openings also being used to measure
the pressure field. It is known that the pitot-static tube only gives
the mean velocity. It can be used in water with some difficulty, to
measure speeds as small as 30 mm sec_JL (Preston, 1972). Howevexr, the
pitot-static tube is a slow-responding instrument, and this is a big

disadvantage in its use.

E.6.1 Design of the Pitot-Static Tube

The pitot-static tube used in this investigation was cf 3 mm

protracto supporting rod of the
—:;7 pitot-static tube
(i |
N

[::::::] perspex glass cube

pivot axis

;/——— axis of rotation

——

PROFILE

zero degree
reference line

e

Fig. E.5
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external diameter and had a hemispherical nose (head) supported by a
vertical stem at the downstream end. In order to make correct measure—
ments, the pitot-static tube had to be aligned with the local flow direc-
tion; this was achieved by using a perspex cube and a protractor (Fig. E.5).
The tip of the pitot-static tube was so positioned that it was directly
below the pivot axis (axis of rotation) and was independent of the align-
mént chosen. Normal laboratory water manometers were used that could be -
read to+0.5 mm. The velocities to be measured were generally large
enough to inluce an adequate velocity head which thereby insured sufficient
accuracy in the manometer readings. Two lengths of 2 m flexible plastic
tubing were used for connecting the pitot-static tube to the manometers. .
The plastic tubing was of the same material as that described in Cection
E.5.4. Also, an elaborate flushing arrangement similar to that explained
earlier was made for the pitot-static tube to remove air whenever it

interfered with the velocity measurement.

In contrast to the pitot tube, the static pressure, as measured
by the manometers, is influenced appreciably by the position of the stem
relative to the pressure holes and by the distance that the holes are down-
stream of the nose. The effect of the nose is to increase the velocity
over the pressure holes and thus to depress the measured pressure below
the true static value (Johansen and Ower, 1932), whereas the presence of the
stem produces a 'damming' effect which tends to produce an error of oppo-
site sign to that of the nose. Ower and Pankhurst (1966) have recommended
that the static orifices should be 5 tube-diameters back from the base of
the nose. Their results also showed that if the stem was then 8 diameters
behind the static holes, the pressure at these holes would then ba the
stream static pressure. These recommendations were adhered to as far as

possible in the design of the pitot-static probe.

E.6.2 The Effect -of Misalignment

In general, errors will arise if a pitot—static'probe is not
accurately aligned with the direction of flow, but before discussing this

matter, the following terms must be defined.
(a) Yaw

Yaw is used to signify rotation about an axis passing through (or

parallel to) the stem of the instrument.
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(b) Pitch

Pitch is the angular deviation in the plane containing both
head and stem. The angle of pitch is also referred to as an angle of
incidence. As yawing the tube is much simpler than pitching it, mcst
experimental results relate to angleS(afyaw rather than to angles of
incidence. Pitch gives slightly different results for corresponding
deviations about the axis of the stem. The investigation of Bryer and
Pankhurst (1971) shows that if the direction of flow is uncertain by
as much as 25o or 300, the hemispherical nose is much to be preferred.
The maximum error that would be incurred due to misalignment within the

angular range would be about 2%

E.6.3 Theoretical Investigation of the Turbulence Effect

on Flow Measurement by Pitot-Static Tube

£p general, turbulent flow can be regarded as having a steady
velocitySZ73n which is superimposed a random turbulent velocity 37 which
has a finite value at any instant but an average value of zero taken over
a sufficiently long time interval. The turbulent velocity'z can be
resolved into components u , y and w parallel to the axes of a three-
dimensional Cartesian system of co-ordinates with the x-axis aligned
with the direction of mean flow. At any instant, the velocity component

in the x-direction is U+ u 3 u may be positive or negative, but its
pitot orifice static pressure holes

"’_.x Usu . (

z

eod

Fig.E.6 Pitot-static tube in a turbulent flow

average value is zera; and similarly for v ans w . The associated pres-
sure changes, however, depend on the sguares of the velocities, and the

mean value of these are not zero.
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The turbulent velocity components affect the readings of bhoth
the pitot and the static tube. Goldstein (1936) investigated these
effects theoretically, neglecting the possible effects of factors such as
frequency, damping, resonance, and lag in leads. Since pitot tubes are
almost insensitive to yaw up to about £15 degrees, he showed with fair
' confidence that the mean pressure recorded by a pitot orifice in incom-
pressible flow is not (5 +&py? ) but [B +%pT® + kp(W + ¥ + w )],
where ﬁ?' etc. are the mean squares of the turbulent components u etc.
However, it should be noted that the argument on which this conclusion
is based only takes account of the turbulence intensity, and not of its
scale. If the turbulence scale is large compared with the diameter of
the pitot tube, the probe responds as if the flow-direction were continually
varying in a random manner. This effect tends to reduce the recorded stag-
nation pressure (Bryer and Pankhurst, 1971). The relatively large insen-
sitivity of the pitot tube to misalignment with the flow, however, suggests
that this effect remains negligible unless the intensity of the transverse

fluctuations are large.

The effect of stream turbulence on the reading of a static tube
is known to be uncertain. Early work (Goldstein, 1936) suggested that the
reading of static pressure exceeded the stream static pressure by {p(;3-+;3 ).
A subsequent analysis took into account the effects of turbulence scale,
and concluded that the reading exceeded the stream static by twice this
amount, i.e. by Bp(;3~+;3), when the turbulence scale is small compared
with the diameter of the probe. But when the turbulence scale is very
large, the tube was shown to read low by % (v? +w? ). The values of the
correction between these two limits are not known quantitatively. The
effects of turbulence scale on the readings of static probes of different
sizes were examined by Bradshaw, Goodman and Dorothy (1968). Their experi-
ments confirmed the above conclusion and showed that the readings of probes
of a common size are closer to the static pressure than to the extreme
theoretical predictions. Although these effects are often negligible
iﬂ practice (Bryer and Pankhurst, 1971).

E.6.4 The Turbulence Effect on Flow Measurements by Pitot-Static Tube

The turbulent velocity components affect the readings of both the

pitot and the static tube. This manifests itself as fluctuations on the
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manometers. An effective method of reducing the resulting unsteadiness
~of the menometer readings in such conditions depends, in principle, on
the fact that a tube of given dimensions exerts a certain amount of
damping on the motion of a pressure pulse along its length. The damping
due to the total-head tube will obviously be less than that of the static
tube on account of the larger resistance of the small static orifices.
Hence, even if the same pulse ‘acts simultaneously both at the mouth of
the total-head tube and at the static holes, the fluctuations will not

be damped to the same extent, by the time the pressures reach the
mancmeters, unless some resistance is introduced in the total-head
conhecting tube. Such extra resistance may be provided by using a longer
length of plastic (or rubber) tubing on the total-head side, but a more
convenient and economical method is to insert a piece of capillary tube
into the total-head connecting tube. The amount of capillary inserted

can be altered until a sufficiently steady manometer reading is obtained

(Ower and Pankhurst 1966).

Insertion of the viscous damping into the-pressure leads would
reduce the fluctuations of pressure to a negligible amount, so that the
mean pressures transmitted would be the true time averéges of the pressures
at the pick up points (Ower and Pankhurst, 1966). Viscous damping may
be used with success, for example, in the form of capillary tubing. The
viscous element should offer the same resistance to motion in either
direction, hence, if capillary tubing is used it should be at least 100
diameters long to reduce possible errors due to dissimilarity between its
two ends. In this investigation, it had been found that approximately
50 mm of capillary tubing of 0.5 mm bore was sufficient to result in a

. greatly improved steadiness on the manometer.

However, it should be noticed that a system balanced in the
manner mentioned above will not necessarily always give entirely steady
readingé even if the viscous damping is increased considerably. This is
due to some non-stationarity in the turbulence pattern of the flow (Karki,
1976). In this investigation a very slight variability of the water
surfaces in the manometers showed that in order to establish a reliable value
for the mean readings, the manometer readings had to be repeated (Powell and
Posey, 1959) sometimes as many as twenty times. At a fixed location, the
readings of manometers normally took 20 minutes which meant that the process

was tedious and time-consuming.



172

E.G6.5 The Calibration Factor for the Pitot-Static Tube

The calibration factor for a pitot-static probe is defined by
P~ p = Kypu’ (E.16)

where P denotes the pressure measured by the pitot orifice and p that
of the static side of the instrument. Tests have revealed that the
calibraticn factor X, in incompressible flow, is & function of the probe

Reynolds number, i.e.

XK = F(R ropel= F (—[1\)—]3) (E.17)
where .
F = gsceme function of the Reynolds number of the pitot-static
tube |
D = external diameter of the tube .
U = velccity of the undisturbed strean

= coefficient of kinematic viscosity.

Viscous effects become significant when the Reynolds number is less than
about 100. For most practical purposes the influence of the Reynolds
_number on a pitot-static probe is negligible except for specially made

miniature instruments, or at very low water velocities.

E.6.5.1 Calibration of the Pitot-Static Tube

The simple ‘well-known flow system' procedure where the prcbe
is introduced into a known velocity profile was adopted for the calibra-

tion of the pitot-static tube.

- The calibration was conducted in a horizontal flume which had a
nominal width of 100 mm and a length of 2.8 m, a smooth aluminium bed
and vertical glass side walls. The inflow to the flume could be maintained
at a coﬁstant head by using an overflow pipe in the inlet box. The maximum
depth of water possible in the flume was 310 mm. Water entered the flume
under a full-width adjustable sluice gate which was made of a brass plate
_ with. a knife lower edge. Figure E.7 is a diagram of the equipment in

which 'a' is the gate opening, H1 is the depth of the approaching flow
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which has amean velocity of U1 and ac is the depth of flow at the vena
contracta. The depth of the water upstream of the sluice gate, the

opening of the gate and the depth of the water at the vena contracta weré

honeycomb
baffle

constant head

overflow adjustable sluice gate

‘//,——.pitot-static tube

adjustable
-tailgate -

| e - '
. _l!| l vena contracta /ﬁ
supply - ' ' '
pipe

outflow

measuring tank

{

to underground
sump

Fig. .7 Iayout'and some details of experimental arrangement made for

the calibration of the pitot-static tube

measured by a precision point gauge with the reading uncertainty being
- #0.1 mm. The discharges were measured volumetrically over a measured

time interval in a tank having an area of 0.912 m2.
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As the water emerged from the sluice gate, the free surface

controcted to a minimum section known as the vena contracta (Plate VIII); this

m

occurred at a distance from the gate approximately equal to '4'. Neglecting the
viscous effects, the velocity distribution across the vena contracta
section could be assumed to be uniform and parallel to the flume bottom
and sides. The static apd total pressures p and Py were measured by

means of two manometers with an uncertainty of 0.5 mm in the head reading;
for low heads two inclined-tube manometers were used. The pitot-static
tube was inserted in the vena contracta and was aligned with the flow
direction. By changing the flow conditions different velocities at the

vena contracta were achieved.

Calling on Eq. (E.16)

p, -p = KyiuU? : . (a)
or ‘ ‘ (E.18)
u? ’
hy -h = Kg (b)

where g is the acceleration due to gravity and (hl_h ) is the difference
of head between the dYnamic and the static openings, i.e., the manometer
head. The results of the experiment are tabulated in Table E.3.
Performing a simple linear regression with no constant with dependent
variable y* and independent variable (hi—h } gave K = 1.032,while the
standard error of K was 0.009 with the Pearson product-moment correlation

coefficient r = 0.998 (Fig. E.8).

E.6.6 Correction of Turbulent Flow

Pitot-Static Tube Measurements

. When the flow is Steady and the probe installed properly, the
flow velocity can be calculated, with an uncertainty of *0.25 per cent
(Reynolds, 1974). If the flow is turbulent (Fig. E.6), the pressures at the
sensing points will fluctuate as the local flow direction and velocity wary.
However, if the damping in the pressure lines are high enough, the recorded
pressures will still be nearly steady. It is not possible to predict the
instantaneous pressures just inside the sensing holes for a specified

structure of ambient turbulence, but a plausible assessment of the effect



PLATE VIII  CALIBRATION OF THE PITOT-STATIC TUBE
IN THE NOMINAL 10 CM FLUME

PLATE IX  ASSEMBLY OF DIFFERENT MEMBERS OF THE
Z2-HOLE TRANSVERSE-CYLINDER YAWMETER
IN THE NOMINAL 10 CM FLUME



H1 a a.c (h1 - h) 0 U
flow rate
mm mm mm i cm? /sec cm/sea
309.8 20.8 13.9 196.4 3373 233.3
290.8 20.8 13.3 275.0 3230 234.6
2¢8.9 20.8 13.3 253.0 3072 221.3
245.3 20.8 13.6 230.0 2959 208.8
220.9 20.8 13.7 205.5 2797 ’ 196.3
199.5 20.8 13.8 182.5 2629 183.4
172.4 20.8 13.6 157.1 2403 169.3
151.0 20.8 13.7 136.1 231¢ 162.9
121.3 20.8 13.5 116.1 2092 148.5
92.2 20.8 13.2 80.0 1754 127.9
60.8 20.8 14.3 49.5 1417 95.0
36.9 20.8 14.7 27.5 1083 71.0
28.1 20.8 14.6 20.5 956 62.8
Table E.3 Calibration of the pitot-static tube
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of the fluctuaticns can be obtained by assuming that the fluctuating

pressure differential hs -the form

Pl—P = 1-.P = KAED[-IT: + Kl u? + Kz(vz + W )J fB.lg)

with. the constants Kl and K2 modified to account for distortions intro-

duced within the pressure lines.

E.6.7 Ritpt-Static Tubes in Pressure Gradient Flows

It is known that when a pitot-static tube is used in uniform
flows, and if h = (hl—h ) is the difference of head between the dynamic
and the static copenings, i.e., the manometer head, then the velocity U is
given satisfactorily by Eq. (E.léb) which cén be written in the foliowing
form ' ' ‘

U = /2gh/K ' (£.20)

where, as already defined, g is the acceleration due to gravity and K is

liguid surface

h

\— ’ : flow direction

..........................................................................
...........................................................................

Fig. E.S Pitot-static tube in adverse pressure gradient flow
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the calibration factor. If now the same tﬁbe is placed in a flowlwith a
'lo.ngitudinal pressure gradient (assumed to be adverse) of dp/dx, and if
Ax is the longitudinzl distance between two sets of holes, the difference
of static pressure is (Ap/ax)Ax = 4p = pgbh, where pg is the specific
weight of the fluid. 1In this case, if Py denctes the pressure given by
the pitot' orifice and p that of the static side of the instrument, the

following relationships can be written

P, - p = Kou’ (a)
i < el
i SO GS Sl (b)
Pg g 2g
(h i
h, - ~ Ah) K — c) )
1 29 ©N (521
h-h +5n = Xx2- (@)
1 29 ‘
—
h .
. 3 29 _ 2gh 4h. !:'_ 2¢h (e)
U = \/K (h+hn) = [ =1+ —\/———va(B) /
where .
£ = An/h » (8.22)
The £(B) can be expanded as
; 2 3 4 5 6 7 8
£(B) =1 + 8 g2 g3 5B 358 218% 338 4298° = (E.23)

>~ 8 * 16 128 T 1280 ~ 1024 T 2048 T 32768

The exéressio:i for £(B) converges rapidly for B < 1 and the first five
terms were found to give sufficient accuracy. The functicn F(B) is shown
plotteé in Fig. E.10, it can be seen that when'-!B is close to unity,f(B)

could be as hicgh as 1.40.
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E.7 DETERMINATION OF THE MEAN FLOW DIRECTION

Pressure probes used as direction indicators have distinct
advantages over alternative devices such as tufts, whose indication of
direction cannot easily be related to any one point ard whose introduc-
tion can produce more disturbance to the flow. Pressure probes also
avoid certain errors associated with the inertial and gravitational .

forces affecting mechanical indicators.

There are two common methods by which flow direction can be
measured with pressure-type yawmeteré (in this thesis, the term
'vawmeter' is only used to describe those probes which are designed
specifically as direction-sensing instruments). In either case the
probes are similar and have a symmetrical arrangement of sensing holes.
In the first case, known as the alignment or null-reading or equibalanced
method, use is made of the equality of pressure at symmetrically opposite
points on a symmetrical probe. The probe is orientated to a positicn at
which the same pressure is recorded at each hole. The flow direction can
then be related to the geometry of the probe. In the second method, no
attenpt is made to align the prcbe azccurately, instead, the proke is kept
stationary and the pressure differences between symzetrically opposite '
holes are measured and the flcw direction is deduced from a prior calibra-

tion in which the probe is orientated in a steady known £low.

The types of instrument which are used without rotation, althcugh
of similar geometry to the null-reading types, should be designed for con-
venience so that the pressure differences are linearly related to the
angles made by the probe axis to the flow direction; this enables the
more convenient use of constant calibrations over at least part of the

gle.range for which the probé is designed. ressure-type yawmeters
possessing two or more sensing holes are more reliable than other types
of direction-sensing instruments. Winternitz (1956) has investigated-the
sensitivity and the effects of changes in the probe Reynolds number (the

probe Reynolds number is defined as R = 90 , where U is the speed

probe v
of the undisturbed flow, D is the external diameter of the probe and v
is the coefficient of kinematic viscosity). When 21l these points of

view are taken into account, the null-reading method is to be preferred.

The first of these methods is recommencded where possible because
it is a relatively simple matter to design probes which will give a high
value for pressure difference per unit change in flow direction (high
sensitivity). A further zdvantage lies in the comparatively short time

required to obtain a steady manometer reading of nearly equal pressures
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as against different pressures recuiring a displacement of air and gauging
fluid through the differential pressure manometer system. The method is
especially suiteble for two-dimensional flow measurements in which a single

rotation is sufficient (about an exis perpendicular to the plane of two-

dimensionality) .

E.7.1 Design of the Pressure-Type Yawmeter

A transverse-cylinder vewmeter of 5 mm external diameter was

made for precise flow direction measurement (Fig. E.1l1). The body

DIXo-

' traectyr supporting rod of

pitot-static tube

éil.perspex glass cube

Ve body (cylindrical stem)

| ——— axis of rotation

///——— pressure-sensing holes
»

PROFIL

zero, degree
reference line

Fig. E.11 Schematic representation of the 2-hole transverse-cylinder

yawvmeter
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(the cylindrical stem) and the two tubes inside were made of stainless
steel. Two 0.5 mm diameter holes were drilled normal to the cylinder

axis and 4.5 mm from the probe end. The directions of the sensing
holes‘relative to each other were orthogopal. As the probe diametér was
small, a cut-cylinder section was used at ité lower cond rather than a hemi-
spherical section, due to difficulty in the manufacture of the latter

type.

In order to assemble the different parts of the yawmeter,
the probe and supporting rod were first inserted into a perspex cube.
' Then a protractor was positioned on the upper surface of the perspex
cube; so that its centre was aligned with the vertical axis of the yaw-
meter stem. The direction of the line joining the centres of the
cylindrical stem and the supporting rod was regarded as the zero degree
reference line. Two 2 m lengths of flexibie plastic tubing were used
for connection to the tubes and the differential pressure manometer
(water-air). In addition an elaborate flushing arrangement similar to
that described in Section E.5.4 were made for the yawmeter probe to remove

air whenever it interfered with flow-direction measurement.

In order to fix the position of the protractor relative to the
yawmeter probe, the same arrangement as was made for the calibration of
the pitot-static tube was used. The probe was placed in the vena contracta
(Plate IX) of the incoming flow issuing from the sluice gate and was
subsequently rotated until the readings on the differential pressure
manometer were the same. Then the protractor and the yawmeter stem were
glued together with the zero degree direction on the protractor aligned

with the reference line mentioned above.

Designs with only one pairof off-centre pressure holes such as
the one described ébove are normally difficult to manufacture but are
basically more reliable and have a better -all-round performance whilst
~ generally offering less disturbance to the flow than ahy other type.
They are convenient for two-dimensional flow investigation when used

with. rotation to give a null-reading alignment.

E.7.2 Woollen Tufts

The direction of flow was observed also by means of woollen
tufts approximately 20 mm in length tied to a 3.2 mm diameter rod.
These woollen tufts were also used for visualizing and locating the

separation points.
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E.8 MEASUREMENT OF THE, MEAN WALL PRESSURE

_ The mean retaining wall pressure was measured by providing a
large number of pressure tapping points (Fig. E.13). This method had the
advantage cf measuring the pressure distxibution on the wall. The pres-
sure holes were 0.5 mm in diameter. - This is virtually the smallest dia-
meter which can be used when a large number of pressure taps are dealt
with. However, during the initial stages of this investigation, it was

noticed that air from the water flow lodged just inside the pressure holes

big bubble of' air '—"‘I L'é—mm

retaining
wall

pressure
tapping point

connecting tube
to manometer

Fig. E.12

(Fig. E.12). At first, measuring the wall pressure by means of pressure
taps seemed to be an impossible task. Subseguently, the reason for the
formation of a large air bubble in the pressrue holes and a means of com-

batting this difficulty was discovered.

Previous investigationof static pressure taps has shown that in

~ general the absence of a solid boundary over the area of the hole changes
_the local flow conditions. As shown theoretically by Thom and Apelt (1958)
and cbserved by Ray (1956), fluid flow is deflected into the hole (Fig. E.14).
Stream turbulence would make this situation worse. If a length of tubing
having a restricted inlet at the pressure tapping point end and a manometer
at the other end is considered, it can be said that a fluctuating external

pressure at the inlet will cause a flow in and ouvt of the pressure hole.
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Fig. E. 13 The arrangement of the pressure taps on the retaining wall
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Fig. ﬁ.l4 Flow behaviour at the static pressure hole

In the case of the pressure holes of the retaining wall when, due
to the effects mentioned above, water enters the préssure‘taps, it is
accompanied-by air bubbles which are of limited size, 0.5 mm diameter.
However, when there is a flow out of the pressure holes, unlike water, tiny
air bubbles cannot descend and follow the internal conical geometry of the
pressure taps, instead they accumulate and a large air bukble may occur

" inside each pressure hole.

To overcome this problem, another tube of 2 mm internal dizmeter

was fixed at the back of the pressure tap (Fig. E.15). In this case, no

tube of 2 mm

Iinternal diameter
no bubble of air occurred in
the small tube or in the —

connecting tube to the
manometer

0.5 mm

'T_

retaihing
wall

/

pressure
tapping point

connecting
tube to
manoneter

Fig. E.15



the arrangement of the pressure taps on the
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visible air bubble was observed in the small tube or the connecting tube
to the manometer. Perhaps, in this case, minute bubbles of air rise

from the small tube and burst. A pressure hole having a sharp angle with

pressure tapping
point

connecting tube to
manometer

retaining
wall

Fig. E.17

respect to the wall, instead of the conventional 900, such as the one
illustrated in Fig. E.17, might solve the problem; however, manufacturing

and employing this type of pressure tap is extremely difficult.
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MEASUREMENT OF THE MEAN BED PRESSURE.
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The mean pressure on the chahnel bed was measured by providing

a large nucber of small diameter piezometric tepping points.
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Fig. E.18 The errangement of the static pressure taps on the channel bed

was divided into three sections of equal width and a row of 0.5 mm dia-

meter pressure taps were located at the centre of each section (Fig. E.18).
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E.10 THE MEASUREMENT AND ANALVSIS OF WAVE HEIGHT

The complicated wave patterns occurring at the retaining wall
were studied by employing a capacitance-wire gauge technique. This
essentially simple method makes use of the fact that water is an efficient
conductor of high frequency alternating currents. If a high frequency
voltage is applied to a wire which has a non-conducting coating, then,
when it is partially immersed in water, the wire acts as one plate of a
capacitor, the coatihg as the dielectric and the surrounding water as the

other plate.

In order to investigate the wave conditions occurring at the
retaining wall, it was initially intended that three conventional labora-
tory wave gauge probes be fixed adjacent to the wall. However, the
supporting rods of the probes would have interfered with the flow pattern.
Instead, the retaining wall was divided into three equal vertical sections
with a capacitance-wire gauge fixed in the middle of each section. The
wire gauges were . perpendicular to the channel bottom and paftly immersed
in the water flow. Each gauge consisted of a double length of coated wire
of 0.4 mm diameter kept taut between a perspex tube fixed at the top of
the wall and a non-conducting semi-circular disc at the bottom and fixed
. to the wall (Plate X). The three semi-circular discs were fixed to the
bottom by means of screws, which were left uncoated in order to be conduc-
tive. Three screened low-noise cables were each connected to the retaining
wall, the coated wires at one end and to the remainder of the wave height
recording apparatus at the other end. A high frequency signal from an -’
oscillator was applied between each wire and the painted metallic wall
which conducted it to the water surrounding the wire (through the uncoated
screw attached to each non-conducting semi-circular disc). As a wave
passed <ach gauge, the immersed length of the wir changed, thus changing
its capacitance and inducing an effect on the applied signal. The only
source of error was that produced by surface tension which caused a slight

dawmping of the readings.

High frequency fluctuating signals are unsuitable for use with
recording instruments, and if they are used, it is first necessary to con-
vert them to direct voltage outputs. In the experiment, this was done
by three transducers, which used the fluctuations in capacitance of the
gauges to produce corresponding frequency modulations of the applied

carrier signals. Each modulated signal was then fed into a unit containing
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a frequency-discriminating circuit which converted the frequency change to
a proportional change in the direct output voltage. The simultaneous
water level signals belonging to three different points along the retain-
~ing wall were translated into curve-traces on photographic paper via an

ultra-violet recorder (Type 1185).

The ultra-violet recorder is a machine similar in principle to
a moving-paper/moving-pen recorder, but instead of the use of a pen, the
recoxrd ;s produced by a thin beam of ultra-violet light. It is a general
purpose instrument which can receive up to thirty-six channels of infor-
mation to be recorded simultaneously. However, in this investigation,
.only three were required for recording wave heights. The thin beams of
ultra-violet lights are focussed onto a roll of light-sensitive paper,
305 me in width, and moving at a predetermined constant speed. The move-
ment of each beam is controlled by a mirror mounted on a small galvanometer
coil which responds in proportion to the direct voltage applied to it..
Before taking a record, it was necessary to adjust each galvanometer
alignment by rotating the galvanometer (using the adjusting tool) until
the light image appeared at its correct position on the paper. Several
paper speeds were available, anyone of which could bhe selected'during
running by means of a switch on the front panel. The paper speeds pro-

vided were 762, 508, 254, 152.4, 101.6, 50.8 and 38.1 mm/sec. The record-
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ing process was entirely electronic and had the advantages of high frequency

response and very little lag.

E.10.1 Calibration of the Wave Recorder Probhes

The calibration of the wave gauges/transducers/recorder com-
bination was a critical factor in the measurement of wave heights. It is
known that the calibration varies with ambient temperature so the cali-
bration procedure had to be accomplised in as short a time as possible to
minimise temperature effects. It is also known that the calibration varies
if the position of the connecting wires between wave gauges, transducers
and the recording apparatus change. To prevent this source of error
occurring, extreme care was taken that the connecting wires did not change

position.

After the variable water level recordings were made, the water

flow was stopped very quickly by opening all the gate valves connected
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to the reservoirs. Still water lévels produced by means of a calibration
well (Plate XI) were measured, relatiye to the channel bottom, by a preci-
sion point gauge. The static calibration was achieved by relating still
water levels, to the corresponding recordings made on the photographic
paper. After the fixinglug of the calibration well was connected to that
of the retaining wall by means of a plastic nut and bolt, the sides and
bottom of the calibration well were efficiently sealed with plasticine

at the bevelled edges. Water was allowed into the calibration well and after
it had filled the well and became completely still, the point gauge in the
stilling well was read. The corresponding water level in the stilling
well was recorded on the photographic paper from the signal obtained from
the wire recorder. The tap incorporated at the bottom of the calibration
well was used to drain the water inside the well and in thisAway a new
water level could easily be cbtained. This step waé repeated for 30
different depths in the stilling well during each run. bThus, knowing

the reading of the point gauge and the corresponding signal shown on the
photographic paper, the scale of the recording on the photographic paper

could be determined.

The important requirement was that the calibration of each wave -
recording probe should be linear over the full range needed for wave measure-
ment. This was found to be the case provided that the bottom part of the
gauges, wheré the wires pass around the non-conducting discs, were kept well
below the water-surface. Because a linear calibration depends on the wire
insulation being uniform, care was taken when handling the wall holding
the wire gauges at all times so that the coatings would not be damaged.

As it was necessary in each'run to adjust the three galvanometer aligmments
by rotating them using the adjusting ﬁool in order that the three light
images did not go beyond the width of the light-sensitive paper, the cali-

bration process had to be repeated for each run.

E.10.2. The Analyser

The water level records made on photographic paper were continuous
traces of water levels against time. To transform these reccrds into
digital records, suitable for computer analysis, coordinates were read

from the traces on to computer punched cards using an X-Y plotter.

The X-Y digital data reader equipment was sucglied by P.C.D.
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PLATE XI VIEW OF CALIBRATION WELL
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(Farnborough)and was operated together with a ‘'Dynamco voltmeter'. Plate
XII shows the analyser used and its different components. The reader,
which was housed in a stressed-skin metal structure, contained three
highly linear potenticmeters associated with the X-Y outputs. Accurate
readings were obtained through the use of the anti-parallax double ring
magnifying reading sight with a magnification of 1:1.3. A 'carriage' (A4),
which carried the sight, moved horizontally across the unit and its posi-
tion determined the X output. Fecilities were also provided to move the
carriage along the X axis by fixed increments of 2.5, 5, 10, 25 or 50 mm
as selected, in this case, a 'selector switch' (B) permitted readings at
regular intervals. The eyepiece was moved up and down the carriage
manually to follow the plot being measured with its position specifying
the Y output. Extreme freedom of movement of the sight helped to follow
any curve whilst positive locking of the carriage in any X position permit-
ted the multi-channel record to be read at a common X line. Up to six
channels were available, each with individual scale and zero adjustments.

The plotter was adjusted to read water levels along the Y axis, at fixed
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Fig. E.19 Three simultaneous water level traces on the light-sensitive

paper
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increments of time, along the X axis. Spools were provided to hold the
continuous water level recording paper with magnetic strips to hold the
edgesvbf the paper to the|reading area. The chart reader was electrbni—
cally coupled to an IBM-026 card punch machine and the data displayed cn
the chart reader panel (C) was automatically punched'cnto cards.

However, as equispaced sampling was edopted in this iﬁvestiga—
tion, only three channels out of six were required for recording the three
vertical distances of the traces on the paper. The scale length for the
vértical axis varied from 0, which corresponded to the point(a) chosen
{Fig. E.19) very close to the lower edge of the paper, to 6000 which corres—
pronded to the point (b) very close to the upper edge of the paper.

E.10.3 Selection of Paper Speed and Digitisation Interval

The choice of paper speed was closely related to the time incre-
ment. to be used in digitising the wave records, the physical limits of
the recording and to the digitising eguipment being used, once these-

limits were known.

In Section C.5;3, it was explained that fN = 1/2At, called the
Nyquist frequency, is the highest frequency which can be detected from
the periodogram of data sampled at At. Table E.4 gives the NyquistA
frequency corresponding to a giveh paper speed and a given digitisation

interval.

per speed
762 508 25¢ |152.4 | 101.6 | 50.8 | 38.1
interval mm

o

2.5 152.4 {101.6 | 50.8 | 30.5 | 20.3 10.2 | 7.6
g

5 76.2 | 50.8 | 25.4 | 15.2 | 10.2 | 5.1 | 3.8 &Y
3
15)]
5

7.5 50.8 | 33.9 | 16.9 10.2 6.8 3.4 2.5 $
=

Table E.4 . The Nyquist freguency fN for a given paper speed and a given

digitisation interval
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In the initial stages of this investigation, since very little
was known of the maximgm frequency fmagf the complicated wave patterns near
the retaining wall , a very fast paper speed of 508 mm/sec was chosen to
analyse the first water level recordings. Using the digitisation interval

of 2.5 mm, the digitising time interval will be

At = 0.05 sec ' (E.24)

and the corresponding Nyquist frequency will be 101 Hz (Table 4). While
in itself this appeared unrealistic, it allowed an examination of the
spectra over a wide range of frequencies in order to find a more realistic
cutoff frequency. This action was taken in the absence of any knowledge
of the highest frequency response of the wave recording probes, the limit
of which was probably caused by the surface tension drag of the water on-
the probe wires. However, in the initial stages of the investigation,
the ordinates of the spectra were all found to be very small for freguen-

cies higher than approximately 10 Hz.

The smallest digitisation interval (2.5 mm) was adopted for
digitisation of all the records. Since it was known that the maximum
frequency was fma; 10 Hz, from Eq. (C.142), it was concluded that At=0.025.
By referring to Table E.4, it followed that the appropriate paper speed

‘was 101.6 mm/sec; this was adopted for all the experiments. The paper
speed of 101 mm/sec and digitisation interval of 2.5 mm resulted in sampl-
ing interval -of At = 0.025 sec and a Nyquist frequency of fN = 20.3 Hz.
The frequencies close to the cut off frequency of 20.3 Hz contribute little

~ or nothing to the total variance, and aliasing would be unlikely to occur.

E.10.4 Number of Data Points and Length of Recording Paper

With the variable At fixed, it was possible to look at the spectra
produced by varying N. In the initial stages of investigation, according
to the recommendation given in Section C.5.9, three values of N were con-
sidered - 1024, 512 and 256. With N = 1024, the best estimates were
obtained, hence 1024 was chosen for all the experiments. In this case,
for each experiment, the total length of approximately 4.5 m of light-
sensitive paper was necessary;-2.6'm of this was for wave recordings and

the remainder for calibration of the probes.
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E.10.5 - Calibration Lines of the Wave Recording Probes

In this invesfigation, the digitised water levels obtained from
the X-Y plotter had units of millivolts rather than of length as was
desired.' To transform the records to the correct units, the calibration
lines were also assigned coordinates in millivolts. . Thus conversions
info correct units, based on calibrations in the laboratory, were applied
as the data were entered. For each wave recording prcbe, this involved

application of simpﬁalinear equation of the form

kp + ¢ (E.25)

o]
I

to, n{n around 30), pairs of measurements, (yl,pl), cens (yn,pn) using

weighted least squares method, where

p = data point in millivolts
vy = corrected data point in mm
k,c = calibration constants

Typical calibration lines are illustrated in Fig. E.20, the lines were
found by linear regression of p versus y (p as dependent variable and y
as independent variable). Subscript 1 corresponds to a measurement from
the wave gauge probe which is close to the channel outlet; subscript 2
represents a measurement from the wave gauge probe which is in the middle
of the retaining wall and subscript 3 belongs to the wave gauge probe
which is close to the side wall. The adjustment, in this case three
simple linear equations, was applied within the computer programme as

the data were entered in for analysis.

It should be noted here that one restriction imposed by employing
the least sqﬁares method (Appendix III) is that the independent variable
should not have any degree of uncertainty while in thié case, there is
uncertainty in both variables y and p. However, in the initial stages of
the investigation, it was found that the linear regression of p versus y
would generally result in a lower sum of squares of deviations about the
regression (s.s.d) than that of y against p. For this reason, the linear
regression where p was-considered as a dependent variable and y as an

independent variable was adopted for each probe in all experiments.
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E.10.6 Estimation of Uncertainty in Wave Height Measurement

There are several sources of uncertainty in the procedure used
to measure and analyse the wave patterns near the retaining wall. The
overall uncertainty in the measurement of wave heights is not a single .
value but varies with the magnitude of the measured wave height. It is
necessary, therefore, to assess the total uncertainty for the worst cases.

The contributarxy uncertainties can be surmarlzed as follows:

(2) Uncertainty in reading of the water level by the point gauge in

the calibration stilling well was 0.1 mn.

(b) Linearity of the deflection cn the recording paper produced
by the galvanometer beam when caapared with the deflecting current is
another source of uncertainty. Non—linearitj would increase as the
beam gets further from the mean positicn. This effect manifests itself
as a scatter of the experimental points &round the line drawn by the
weighted least sguares method (Fig. E.20). From Appendix III, it follows
that the vncertainty in the estimated value cbtained by using least squares
method 1s not a single value but veries with the number of data points,

the confidence level used and alsc the value of the independent variable.

(c) The analyser resolution limitation was given by the manufacturer

to be +0.13 mm.

(d) The linearityof the potentiometers was given by the manufacturer

to_be better than #0.1%.

(e} The operaticnal uncertainty is the random uncertainty of a
typical measurement made with the X-¥ plotter. Its average value should

be found by the oferator.

The estimation of the total uncertainty was carried out for
run a36pl and wave recording prcobe 2. For the calibration of the wave
recording probes, the water depth in the calibration well was varied
between approximately 50 and 280 mm. For the estimation of total uncer-
tainty, the worst case for the prcbe 2 (see Fig. E.20), where the water
depth in the stilling well was Yo = 100 mm and the corresponding signal
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zppeared to be at 100 mm from the point 'a' (Fig. E.19) on the photographic
papexr was considered.  The uncertainty due to the application of least
squares method at a 95% confidence level could be calculated frxom Eq.(III.84).

In this case (see Fig. E.20), it follows that

n = 26 » (a)
e = 0.05 _ (b)
m.s.d. = 114.53 (millivolts)? (c) Y(E.26)
y = 188.9 mm (&)
y_ = 100 mm (e)
The value oﬁltd.025'24 is given by{Chatfield (1975a) to be 2.064. Using

the egquation of calibration

p = -2670 + 24.61 y (E.27)

for Yo = 100 mm, the corresponding millivolts will be Py = ~209 millivoits

and hence the uncertainty will be

: (v, - ¥)?
1, o 3
to/2, (nogy{m-S-de[1 + &+ = — 1)
)2
izltyi y) (E.28)

= 24 millivolts

The corresponding uncertainty in the water depth is 0.97 mm. Using the
root square method, the total uncertainty from the reading by the point
gauge and from the application of the least squares method is

12 ’ R

¥y = (0.27% + 0.1%)° = 1 mm.

To evaluate the average operational uncertaihty, a simple test
was made. An accurate 0.3 m ruler was positioned by magnetic strips to
the reading area and along the Y axis. The zero mark of the ruler corres-
ponded to the point (a) (Fig. E.19) where the number displayed on the
chart reader panel was zero. The 30 ca mark was read 20 times. However,

due to operational error and also due to the uncertainties mentioned in
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(¢) and (d), the readings were evicently different. Using Egqs (E.1) and

(E.4), the relative uncertainty was found to be 0.025. The total uncer-
tainty in length was 300x0.025 = 7.5 mm. The combined uncertainty due to
the non-linearity and resolution limitation in a 300 mm length of the
ruler was [(300xo.001)2+(0.13)5]% = 0.33 mm and hence the relative opera-

tional uncertainty was [(7.5)2- (0.33)2]1’/300 = 2.5%.

As the trace corresponding to 100 mm water depth in the stilling
well appeared to be at approximately 100 mm from the point 'a' on the photo-
graphic paper (Fig. E.12), the corbined uncertainty introduced by the non-
linearity of the potentiometers, resolution limitation and opératiOnal
error is

1
wh, = (0.13* +0.1* + 2.5%)% = 2.5m (E.29)

The total uncertainty in the wave height measurement is of the order of

W, Wng , Wy Y
- =l + (7]

w o ¥ (E. 30)
w .

Y¥oo_ o123 Loya

- - 1§57 * Gog’) 2.7%

E.10.7 Estimation of Uncertainty in Fregquency

A signal generator was used to determine the uncertainty
in the speed of ultra-violet recorder. It was found that at a épeed

of 101 mm/sec the uncertainty was of the order of 2%. The X-Y plotter

was found to have a reading uncertainty of 1% along the X axis. Hence
the total uncertainty in the freguency is of the order of

Tg‘ = [(wuo\z + (MJAX\Z];2

£ u ' AR’

o
(E.3D)
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E.11 ‘EXPERIMENTAL PROGRAMME

The experimental study described here was mainly designed to
provide information about the motion and the behaviour of a plane turbulent

water jet of finite dimensions when deflected by a transverse wall.
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Fig. E.21

Fig. E.21 shows a schematic representation of a supercritical
water flow issuing from an overflow spillway onto a smooth horizontal
channel of the same width, with the flow being deflected by a plane smooth .
vertical transverse wall which is perpendicular to the initial flow direction.
 Observation of the flow indicated that as the water came down from the
spillway, the free surface converged steadily until it attained a minimum
depth at section S-S, situated close to the toe of the spillway and also
became aligned parailel to the channel bed at this section. In Fig. E.21
Hy is the height of the spillway crest above the channel bed, H is the water
level over the spilliway crest, dp is the depth of the flow at section S-S
and t denotes the distance of section S-5 from point O where the channel bed

and the face of the spillway intersect.

With regard to the variables d,,t,H and Hy, it was discovered that
by varying the elevation of the channel bed with respect to the elevation
of the spillway crest, the same depth of flow dm at section S-5 would be
located at the same distance t from the point O (where the channel bed and
the face of the spillway intersect), irrespective of the different velocities
arising at the toe of the spillway (Fig. E.21). Furthermore, it was
observed that with the retaining wall at a fixed position with respect to

the spillway, an increase in the discharge of the incoming flow from the
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spillwéy caﬁsed the distance t to increase (i.e. the section S-S got closer
to the retaining wall). This situation was very similar to a free flow
under a sharp-edged sluice gate lccated in a horizontal rectangular channel
of the same width; as was explained in Section 6.5.1. For the case of the
sluice gate, as the water emerged from the sluice gate, the free surféce
contracted to a minimum section which is well known as the vena contracta.
This normally cccurred at a distance from the gate which was approximately
equal to the gate opening and was independent of the water head upstream

jt:>f the sluice gate (or alternatively the velocity of the water at the vena

.bont;acta).
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Fig. E.22 The flow under a sharp edged sluice gate and the flow from a

spillway into a horizontal channel
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The principal variazbles which governed the present experimental
work were: '
a) the height of the spillway crest with respect to the channel
bed H,;.
) the depth of the flow at the toe of the spillway d; (or the
water level over the spillway crest H).
c) the position of the retaining wall with respect to the
spillway p.
The angle between the spillway face and the horizontal was kept constant
at 62.5° throughout all the experiments.Basea on the three aforementioned
variables,the experiments performed during this investigation can be classified
into two principal groups a and b.In grdup a, the vertical distance between
the horizontal channel bed and the spillway crest was 219ﬁm and for group
b,'this-distance was increased to 519mm. However, for both groups, the
distance of the retaining wall from the point O (where the channel bed and.
the face of the spillway intersect) was changed from pl=480mm to p2=360mm
and then to p3=240mm (where p refers to the position of the retaining wall
with respect to the spillway). In this thesis each experximent is characte—’
rised by six figures. In the first instance a letter denotes the group
which the experiment belongs to; then the second and third numbers give the
cepth of-the flow at section S-S in mm to the .nearest round number and the
fourth and the fifth figures refer to the distance of the retaining wall .
from the spillway. For example, run a3épl represents the experiment
belonging to thg group a (where the vertical distance between the channel
bed and the spillway crest was 219mm) and the depth of the flow at the toe
of the spillway was 36mm and the distance of the retaining wall from the

point O was 480mm.

A total of 21 experiments were undertaken. The important details
‘of these experiments are given in Table E.5, in which,
‘ H, = vertical distarnce between fhe spillway crest and the channel

bed. Only two values (219mm and 519mm) were taken for Hj.

HE = the water level above the spillway crest (varied between
36.4mm and 116.9mm).

Q = discharge ovéer the spillway (varied between 2342c%/sec and
13464c@/sec) -

b = the impingement width which was kept constant at 180mm
thréughout all the experimeﬁts. The impingement width was
equal to the spillway width. '
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a36épl 219 {116.9 13464 180 36.4}1 425 206 | 3.55 | £€5230 11.7 4.9
a208p2 219 {36.4 23421 180 8 344 163 |6.46 { 11370 431 22.5
allip2 Z19 148.2 | 3568 | 180 il 241 i80 |5.92 17320 31} i6.4
*
aldpz 2i9 |58.2 | 4734|180 { 14 336 188 | 5.27 | 22970 24} 12.9
az2spz 219 92 19398 180 |25.1} 313 208 | 4.32 | 45600 12.5 7.2
*
al3ép2 219 |116.9] 13464 180 }36.4| 205 206 | 3.55 | 65330 2.4 4.8
a08p3 219 [36.4 {2342 { 180 8 224 i63 1 6.46 | 11370 28] 22.5
allp3 219 148.2 | 3568 | 180 11 221 180 } 5.82 | 17320 20,1 ic.4
alép3 2i9 158.2 | 4734 | 180 14 216 .188 5.37 ] 22270 15.5] 12.¢
*
az2sp3 219 92 {98398} 180 |25.1] 183 208 | 4.32 | 45€00 7.7 7.2
*
alép3 219 (116.9| 13464 180 |{36.4} 185 206 | 3.55 | 65330 5.1 4.9
+*
b08pl 318 51 {3874 ] 18C 8.1 ] 464 266 [10.31| 18800 58} 22.2
*
blici 519 €5 5578 180 |11.2 ] 461 277 1 8.95} 27070 41.¢| is.1
" -
blépl 51¢ |76.4 } 7114 | 180 |13.9 ]| 456 284 [ 8.12 { 34520 32.6f 12.¢
»*
bl7pl Big 87 18646 | 180 [17.1} 453 281 | 7.18 ] 41960 26.6{ 10.5
*
bldp2 519 |76.4 | 7114 180 |13.5 | 336 |284 8.12 | 24520 24| 12,9
#*
bld4p3 5i9 |76.4 | 7114 | 180 |13.9{ 216 282 | B8.12 ) 24520 15,5} 12.9
* the wave height records were digitised on these runs.

Table E.5 Details of the experiments
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Impingement length which can be defined as the distance
between the section S-S (Fig. E.21) and the retaining wall.

If the impingement length is equal to or less than impingement
width, the deflection of the water jet by the transverse wall
can be called 'square impingement' or 'short impingement’.

The values of the impingement length were varied between

185mm and 464mm were greater than the impingement width.

= the depth of the supercritical water flow as measured

at section S-S along the channel centre line. The value

of d, varied between 8mm and 36.4com.

= average velocity of the supercritical water flow measured

at section S-5. The average velocity was calculated from

the following relationship

_9 (E.31)

bdn

The value of Uy varied between 163Cn/sec and 284Cn/sec.

= the Froude number associated with the shocting flow at

section S-S. The Froude number was calculated from the

following relationship
U
m

Ygd/a

(E.32)

iﬁ which g is the acceleration dua to gravity and a is the
enexrgy coefficient of.the incoming supercritical water flow
at section S§-S. The procedure which was adopted to measure
the coefficient of energy is described in Chapter F. The
Froude number varied between 3.55 and 10.31.

the Reynolds number of the supercritical water flow at section
S-S which was calculated from the following relationship »
Un dp

v

{(E.33)

vhere v is the kinematic viscosity'of water. The Reynolds
number varied between 11.4x10° ana 65.3x10°. |
aspect ratio of the plane turbulent water jet which varied

between 4.9 and 22.5.

dimensionless impingewment length which varied between 5.1 and 58.
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It rust be noted that observaticn of the flow indicated that with
a constant discharge from the spillway, the flow depth dm and the positicn
of the section where the free surface beczme horizonatal {distance t in
Fig. E.21) were unaffected by changing the retaining wall position with
respect to the spillway. The Froude number Fr and the coefficient of
energy a of the supercritical water flow were also unaffected. This fact
was extended for the case, when with a constant discharge from the spill-
way, thé retaining wall was fixed close enough to the spillway (or alter-
natively when with the retaining wall at a fixed position with respect to
the spillwzy, the discharge was high enough) such that the toe of the
forced hydraulic jump was oscillating around the toe of the spillway. In
the latter case, it could be assumed (Stepanov, 1958) that the Froude
number and the nominal values of the flow depth d,, the distance t and the
velocity Um et tﬁe toe of the spillway were the same as the corresponding

values vhere the retaining wall was further away.

E.11.1 Critical Pcint for the Flow Over the Spillway

7ith regerd to the flow over the spillway, a few generzl ohser-
vations concerning the air entrainwznt on the face of the spillwav must ke

rade.

frictionless turbulent
fluid above boundary layer
boundary Iayer,

critical point

s non- %
aerated:

of aeration

Fig. E.23 Definition sketch for a section of flow down a long

steep spillway.
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As shown in Fig. E.23, the flow domain over the long spillways
can be divided into two regicns, from the spillway bed to the boundary
layer edge and from the boundaxy layer edge to the free surface.The latter
region may be considered as a frictionless converging layer of water. It
has been reasonably well established byb several observers such as Bauer (1954)
that for flow over the spillways incipient aeration does not occur_cn'the
slope until a point (or region) is reached at which the boundary layer
thickness is equal to the flow depth. The point where the spillway face -
induced boundary layer meets the free water surface is called the critical
point. Examination of flows beyond the critical point have indicated that
the upper bbunda;y of the flow is violently agitated and hence is rather
ill-— defined. It consists of a zone which appears to be white due to the
high degree of entrained air, while above this zone a spray of water droplets
occurs which move more or less parallel to the flow and below which there
is a region of discrete air bubbles suspended in the fluid. The reasoning
behind this is that the emergence of the boundary layer is associated with
velocity fluctuations normal to the surface which become strong enough to
induce elements of fluid to be thrown clear of the parent motion. These
elements return to the mainstream, carrying air which is then distributed
throughout the flow by turbulence. As atmospheric air is drawn into and
mixed with the flow to create the appearance of white water, the mixture’
increases in volume or bulks. This increase in volumz implies that

aerated flows require higher side walls than non-aerated flows.

It is known that by increasing the flow discharge and thus the
flow depth, the points at which the surface roughening and the white water
occur move downstream‘together with the criticélvpoint. Thus, in the désign
of spillways, for the design (maximum) discharge, uniform aerated flow
iwill not necessarily occur unless the spillway is exceptionally lcng or
the.design discharge is relativley small. Furthermore, it is also known
that the results from model studies which have been obtained in self-aerated
flows in spillways cannot be reliably extrapolated to the prototype through
the several orders of magnitude required to obtain full scale spillway '

quantities.

_ Several empirical methods such as those by Bausr (1954),
Gangadariah, Lakshmana Rao and Seetharamiah (1870}, Campbell, Cox and Boyd (1970)
have been proposed for the prediction of the rate of boundary layer growth
and the position of the critical point. 1In this investigation, for each
experiment, a careful flow observation in additioca to a check using Bauver's
method were made to ensure that the boundery layer thickness was less than

the flow depth before the flow entered tﬁe horizcntal channel bed.



211

CHAPTER F

EXPERIMENTAL RESULTS AND DISCUSSION
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F.1 FLOW DIRECTION

Woollen tufts were used to cbserve the flow direction. The
2-hole transverse - cylinder yawmeter was employed for the measurement
of the flow direction in region I and in the forward flow portion of
xegion II. When the yawméter was being used in region II, it was feared
that air entrainment in the forced hydravlic jump might interfere with the
flow direction measurement. For this reason, the flushing arrangement of the
yevmeter was kept flushed except in the interval when the observations
were being made. It ﬁas found that the air bubbles present in the forced

hydraulic jump seldom presentéd difficulties.

’/—— side wall |

toe of the forced
hydraulic jump

o
>
L
4 .
&éb &ﬁ /eg.ionl
1 /
. A/

4
>

channel centre line

R‘ ¢;%

\E—q—.
037y, , 7
, an axis parallel to

the channel centre

"Fig. F.1 Flow direction

With regard to flow direction, it was assumed that the flow
in regicn I and in the forward flow portion of region II was two-dimensional,
with the velocity vectors parallel to the channel bed and the velocity
Plane at an angle ¢ to the channel centre line. This means that in both

regions I and II for all points on an axis such as Y perpendicular to

1¥1
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the channel bed (Fig. F.1), the velocity vectors were parallel to the channel
bed and lay in a vertical plane at an angle ¢ with the channel centre line.
This assumption only introduced an appreclable exror in ﬁhe zone close to

the top of the forward flow of region.II where the velocity vectors were
considerably inclined with respect to the channel bed and in the backward
flow of region TI. During this investigation, no measurements of flow

direction were made in the backward flow of region IT and in region ITI.

Using the yawmeter, the assumption that the flow was two-dimensional,
as explained above, was tested for several runs and was found to be
approximately true. It was observed that in any plane perpendicular to the’
channel bed and parallel to the channel centre (longitudinal sectlon), the |

magnltude of redirection ¢ increased as the flow approached the retaining

side wall

—— E g‘ ey
channel centre | == HES
i) B NN < | < S,
line .| e ] 8“4
//d?ﬁﬁﬁ;yh’f*" N
. ’/¢ ~

retaining"w,/ B
wall

Fig.F.2 Redirection of the Flow

wall. Moreover, for any plane perpendicular to the bed and parallel to the
retaining wall (transverse - cross section), the anglé ¢ increased from

the side wall towards the outflow. BAlso, it was found that with the
retaining wall at a fixed position with respect to the spillway, an increase
in the discharge from the spillway caused the magnitude'of ® at any given ,,
point in both regions I and II to increase. Figs. F.7,F.13 and F.14 show
the magnitude of the redirection ¢ at different points along the channel
centre line for several runs. In these figures, x denotes the longitudinal
distance from the retaining wall in the upstream direction. It can be seen
that the amount of redirection along the channel centre line was srcall,

being limited to 1° in region I and 12° in region II.
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¥.2 FLOW CEARACTERISTICS OF REGION I

F.2.1 Theory of the Boundary Layer

When viscosity is significant in a problem, for example in the
present investigation, the expedient of separting the flow into two domains
can be used, as suggested by L. Prandtl (1904) in his original statement
of the boundary layer concept. Prandtl considered that in many flow situations
particqlarly those involving fluids of low viscosity, of which water is a
good example, the viscous effects are confined to a relatively narrow zone
which is adjacent to the boundary; the major part of the flow therefore
behaves as if the fluid were non~viscous. Prandtl then proposed that these
two domains be treated separately. The domain where viscous effects are
large is called the boundary layer; the domain of negligible viscous effects
is termed the zone of near-potential flow, indicating that the flow is only
different from the potential flow of the non-viscous fluid. On the spillway
studied here, for example, both domains exist contiguously-the near-potential
flow region being deminantat the upstream end of the spillway with the
boundary layei iﬁcreasing in thickness in the direction of flow. The flow
within the boundary layer is complicated by the presence of rotational flcw
and the internal shear stress, which reaches a maximum at the spillway bed.
However, in order to achieve a better understanding of the boundary layer
development in the present invesiigation, it is necessary to briefly'review
the analytical background to the boundary layer development along smooth
flat plates.

F.2.1.1 Parameters of Turbulent Boundary Layers

The boundary layer which is simplest to study is that forxmed
by the flow along cne side of a thin flat plate parallel to the direction
of the oncoming £fluid. The fluid, originally having a velocity U;in the

u* .
U main stream

turbulent boundary
layer edge

Fig. F.3 Boundary layer on a flat plate.
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direction of the plate, is retarded in the neighbourhood of thé surface and
the boundary léyer begins at the leading edge of the plate. As a greater
proportion of the fluid slows down the thickness of the layer increases.

This means thatas the boundary layer becomes thicker, more fluid decelerztes-
from its original undisturbed velocity, so that the momentum of the fluid

in the direction pazrallel to the solid surface steadily decreases.

 Since the velocity within the boundary layver increases to the
velocity of the main stream asymptotically, an arbitrary convention must
be adopted to define the thickness of the layer. One possible definition
of the thickness is that distance from the solid surface in which the
‘velocity reaches 99% of the local main—stream'velocity component U*. The
‘two other parameters which are used to describe the boundary layer are the
displacement thickness and the momentum thickness. The displacement thick—
' nesshﬁd, is the distance by which the near-potential flow has been dis-
"placed from the surface due to the presence of the boundary layer and is

defined &s

) : :
= U
8, = Ju- ey (F. 1
> .
in which U is the velocity at a distance y above the plate and 6 denotes
the boundary layer thickness. The momentum thickness Gm, is a similar
length paremeter associated with the momentum defect suffered by the fiuid

because of friction end is defined by

S U | U

= = (- = (F.2)
5 " ma-soey
, o

F.2.1.2 Von Kafmafd Momentum Equation

The development of a turbulent boundary layer is governed by the
so-called Von Kafmaf integral - momentum egquation. It is a differential
eguation derived from the eguation of motion or by meking use of the

momentum principle

dp _a 8 2 a8 L
—aa;p—_'ro & (o puay) - v (f° puay) (F.3)
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in which P is thepressure, Ts represents the intensity of boundary shear
stress, p is the mass density of the fluid and xpdenotes the distance in
the direction of flow. It is known that for flows having a small pressure

gradient the sharpe parameter of the velocity profile defined by

‘Sd (F.4)

remains approximately constant. In this case, Eq. (F.3) can be simplified

by using the definitions of Gd and Gm in the following form

T as 8 2 '
m du* (F.5)
c, = §=E_l;'-"+ (1+k/2) —~—2—d§
pU* P u* P

in which (% is the local coefficient of boundary shear stress. However,

the above relationship does not provide any details of the velocity distrib-

ution within the boundary layer.

Prandtl suggested that much of the experimental information
available on turbulent flows in circular pipes could be used in the study
of turbulent boundary layers on flat plates>on the grounds that the
boundary layers in the two cases are not significantly different. He
assumed that the fully-developed flow within the pipe may be regarded as
a2 boundary layer on a flat plate which has been wrapped round an axis
at a distance § from the plate which is equal to the radius 4 of the pipe,
and the maximum velocity (along the axis) Umax’ corresponds to the velocity
U* of the main stream past a flat plate. The universal velocity distrib-

ution law for smooth pipes is

g n (F.6)
U X
max

in which Uy is the velocity at a distance ¥ from the pipe wall and n is
an exponent. Prandtl applied the above relationship to the flat plate
case and proposed the following convenient description for the velocity

distribution in turbulent boundary layers acting under zero pressure gradient

gla

=¢ Ly F.7
(% | | (F.7)

*

which is a straight line when plotted logarithmically. The value of i

is approximately 1/7 for moderate Reynolds numbers (RP=U*xP/v<107 on a

flat plate).
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T.2.2 Velocity Profiles in Region I

Ezrlier in this thesis it was explained that as the water came
down from the spillway., the free surface converged steadily wuntil it attained
a minimum Septh at section S-S (Fig.E.21), situated at the toe of the spill-
way and zlsoc became 2ligned parallel to the channel bed at this section.
Due to the boundary layer developmeAnt on the. spillway, the velocity distribk-
ution at section S-S was non-uniform. Eence, the kinetic energy flux and the
momentum flux of the flow atthis section had to be corrected by the coefficients
of energy and momentum respectively. The calculation of the energy coefficient

was 2lso necessary for the evaluation of the Froude number.

To find the coefficients of ehergy o end momentum B of the super-
critical water flow at the toe of the spillway, the channel width along section
S-S was dividged :Lnté three equal parts and the calibrated pitot-static tube wes
used to investigate the velocity profile at the centre of each part. The
velocity measurements in the three sections at the toe of the spillway
were usually mefe at a depth interval Ad equal to o.5mm. The cbserved
manometer readings were found to remain constant as long as the pitot-static
tube was located within the near-potentizl zone outside the boundary layver.
Some verisbility in the manometer‘readings was observed over long time intervals

‘when the pitot-static tube was moved to the boundary layer. The strzaight
line portion of the logarithmic plot of the velocity profiles at the toe oI
the epillway in Figs. F.4,F.5, and F.6 was determined on the basis cf the
presence or esbsence of any variation in the manometer readings over long.
time intervals. In these figures, section.l represents the sectioq which
was close to the channel outlét, section 2 corresponds the channel centre
line séction and section 3 denctes the section which was close to the side
wall. It must be noted that the velocity measurements at the foot of the
spillway were all made with the retaining wall at position p] and in all
cases the toe of the forced hydraulic jump was at a good distance downstream

of the measuring section.

The secondary motions(Henderson,1966)in xegion I affected the
distribution of velocities and as a result the boundary layer thickness znd
the velocity profiles at the three sections 1,2 and 3 at the toe of the
spillway were not ecual. The velocity profiles indicated that for all runs
the boundary layexr occupied a fraction of the full depth of the flow at the
toe of the spillwzy. This means that in all runs, the state of development

of the fast water stream at the toe of the spillway was quasi-potential.
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The coefficients of energy ¢ and momentim B cen be calculated from
Egs. (B.3) and (B.10). For the flow at the foot of the spillway, these

equations can be written in the feollowing form

/5 vlan () UzAd)l + () U2Ad)2 + () U2Ad)3_

B = = > (a)

u ZA 3u 4 .

m , mon (r.8)

3, . 3
[ vaa - uoad), + (Y utad@), + (] uTad)
_a _ 1 2 3 (b)

5T 3 ) 3u 3d

Um A m Zm

where

U =velocity of the flow at a distence y from the channel bed
Um =average velocity of the flew over full cross-—secticn
A =cross-sectional area of the flow
dm =depth of the flow on the channel centre line
Ad ==depth interval of veleocity measurement vhich was

usually 0.5 mm and occasicnally 0.7 oxr 1 mm.
subscxiptl =represents the secticn which was closetothe channel cutlet _
subscript 2=denctes the channel centre line section

subscript 3=represents the section which was close to the side wall

It sheould be noted, however, that the side walls of the spillway
produced small cross waves which were superimpesed con the general downstream
motion. This was menifested as small pulsations of the water surface in
region I. bue to this effect, velocity measurements at:the points very
clese to the watexr surface in region I were not possible. However, to
obtain the average water depth at each section of 1,2 and 3 at the toe of
the spillﬁay, vhich was neéessary for the evaluation of the coefficients
enexrgy o and momentum B, the depth measurement at each section was repeated
at least three times and the arithmetic mean of the measurements was censidered
as the relieble value for that section. For the calculation of o and B,
the velocity profile of each section 1,2 and 3 at the toe of the spillway
was extrapoleted to the average depth of flow at that section. The values
of o and B associated with the supercritical water flows at the toe of the
spillway are tzbulated in Table F.1. In this table, it can be seen that in
each group of experiments & and b, the magnitudes of the ccefficients o and
B at thg foot of the spillway decreased as the discharge increased (ox altexr-

natively the depth of the flow at the toe of the spillway increased).
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Run a08pl | alipl{eldrl (z25p]1 |al2€pl b08pl 1 b1lpl | E14p1 | b17p1
B i.09 ©1.06 | 1.05 1.03 1.02 1.07 1.05 1.04 1.04
o 1.24 1.16}1.12 1.C07 1.06 1.19 1.12 1.1% i.0¢

Table F.1 Coefficients of energy and momentum

F.2.2.1 Power Law Applied to the Velocity Profiles in Region I

The experimental data in Figs. F.4,F.5 and F.6 indicate that the
shape of the velocity profile in the turbulent boundary layer in region I can

be approximated satisfactorily by a power law of the form

A where U is the velocity at a distance yabove the channel bed,nis an exponent
and c is a constant. However, the experimental points that cccur in the
proximity of the channel bed clearly show some deviation frcm this power
law. 'The reasonihg behind this is that the power law éannot be applied to

'tﬁeA:eéion immediately adjacent to the channel bed. It is especially true
at the channel bed where, for examnle, the shear stress ﬁopalculated on the

basis of the power law becomes

uau n-1

=032 = (ueny ™ 7)) == (F.10)
: * y=o y=0

'whére ﬁ is coefficient of viscosity. Furthermore, immediately adjescent to
the bed is the laminar sub-layer and it is usual to assume that sinCeAthe
laminar sub-layer is so thin, its velocity profile can be taken as linear
and tangential to the power law profile at the point where the laminar sub-
layer merxges with the turbulent part of the boundary layer.

For a given flow depth at the toe of the spillway, the velocity
profiles of tha group of experiments b show, in most cases, lower values
for nthan the corresponding flow depth belonging to group a. In most cases,
n decreases gradually as the Reynolds number RA (based on the length along
the spillway) increases, varying approximatelykfrom a minimum ofvl-to a

1
1 1

maximum of -é— The average N for the experiments is &8 which indicates that

the average behaviour of the boundary layer is in quite close agreement with

1
»7-power law.
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It is difficult, however, to explain the deviation of the velocity
profiles from the one-seventh power law although the pressure gradient was
negligible and the Reynol@s number R, for all runs remained less than 107.

The boundary layer development in region I was more complicated and in many
respects was different from that of the classical flat plate in an uncon-
fined fluid under zero pressure gradient. In the former case, first, the
depth of the supercritical water flow is a finite quantity as opposed to the
somewhat vague parameter assumed for the flat plate case. Secondly, there

is no infinite stream above the boundary layer to maintain the motion or
secondary motions to affect the distribution of velocities and the boundary
layer thickness. Thirdly, due to the existence of a free surface, the gravity
forces are imporxrtant. Furthermore, a new condition must be satisfied, nemely,
that the discharge per unit width in the downstream direction aleng the channel
centre line in region I must remain constzmt (the loss of discharge due to
the redirection of the flow can be assumed to be negligible). The constancy
of discharge may be combined with the boundary layer displacement thickness.
That is

h h '
g= [ JUdy= / o (0-U%) dy+U*h (F.11)

where g is the discharge per unit width, U is the velocityatadistance y
above the channel bed, h represents the flow depth and U* denotes the velocity
at the edge of the boundary layer. By virtue of the definition of the
displzcement thickness

q=Uu* (h—Gd ) (a)

oxr (r.12)
§,=h- L
d U* (b)

This means that in region I, the displacement thickness had a larger effect

on the outside flow because it acted on a finite depth of water, whereas in

an infinite flow, the effect of the displacement thickness is negligible as

far as the change in the potential flow pattern is concerned. It is these

aspects that make the boundary layer development in region I different

from that along a flat plate in an unconfined fluid under zero gradient.



As the boundary layer moves along the channel bed, the continual
action of the shear stress tends to cause the thickness of the boundary
layer to increase from the toe of the spillway in the downstreaﬁ direction.
Fig, F.7 shows the time mean veloctiy distributions along the channel centre
line, at the toe of the spillway and at a section very close to the toe of
the forced hydraulic jump; in addition there are some experimental velocity
points at the toe of the forced hydraulic jump itself. In this figure x
denotes the longitudinal distance from the retaining wall in the upstream
direction. Due to the negligible pressure gradient in the downstream direction
in region I, the boundary layer growth in this region is slow with the flow
having an accelerative characteristic in the boundary layer. The flow outside
the boundary layer introduced momentum into the layer. The velocity gradient
in the outside boundary layer of the section close to the forced hydraulic
jump was much more than that of the boundary layer. This could also be due
to the proximity of the section to the forcedAhydraulic jump. At the end of
the region I (toe of the forced hydraulic jump) the flow decelerated due to
the existence of the adverse pressure gradient and the expansion of the fast

water stream.
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F.2.3 Nominal Boundary Layer Thickness at the Toe of the Spillway

The formulae which have been developed for the computation of the
boundary_layer growth on the spillways are all very epproximete. Application
of these formulae in model studies could lead to serious error in the calc- _
ulation of the boundary layer thickness as the supercritical flow depths in
: 1aboratory'channels are usually small. Bauer (1954), for example, presented
the following empirical formula for the variation of the boundary layer
thickness on spillways '

s ~0.097
= = 0.039 Ry ' (F.13)
XA .

where § is the nominal thickness of the boundary layer, Xg is a straight.
line length beginning from an arbitrary point upstream from the spillway
crest and R, represents the Reynolds number based on the lencth along the

4
spillway.

Fowever, Bauer's formula is very approximate; and this can be seen
by the large scatter of the experimental points around the Bauer's curve in
his published work on spillways. Moreover, Bauer's formula has been gquestioned
by many authors (Campbell, Cox and Boyd, 1965) because of the lack of an exact
definition for the origin of x4, i.e., where the turbulent boundary layer
actually starts. However, just for the sake of comparaison between the cbser-—
ved turbulent boundary thickness and the prédicted value using Bauer's method,
a detailed calculation of the nominal boundary layer thickness aﬁ the foot .
of the spillway for run b14pl is described here

Fig. F.8 Boundary layer development on the spillway.
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Fig. F.8 is the schematic representation of the boundary layer
development on the spillway. As the distance from the spillway crest increased,
the thickness of the boundary layer increased, while the near-potential layer
was reduced in thickness. It was assumed that the origin of x4, lies along
the intersection of the spillway face with the horizcntal line tangent to the
spillway crest and that the turbulent boundary started from this origin.
Furthermore, it was assumed that the flow depth and the boundary layer thick-
ness at the section S-S5 situated at the toe of the spillway was equal to the
corresponding depth and boundary layer at section §-§ on the spillway face ,
where 5-§ and S-S wefé equidistant from the intersection of the channel bed
and the spillway face. The main flow outside thé boundary layer was governed

by the Bernoulli eguation

H4x, sinfd = g:?+d cosh (a)
4 2 m
or (F.14)
- - — ' (b)
u*=y 2g(x251n9+H d_cos8)

where g is the acceleration due to gravity, dm is the depth of the super-
critical water flow at the toe of spillway along the channel centre line,

H is the head above the spillway crest, 8 is the angle between the spiliway
face and the horizontal, U* is the velocity in the main potential region and
X, is the longitudinal distance along the spillway from the origin O (Fig.
F.8). 1In run bl4pl, the values of the parameters of Eq. (F.14b) are as follows

H = 76 .4mm (a)
dm = 13.Smm (b)
o ) , (F.15)
8 = 62.5 (c)
x, = [519-(480-456)5in62.5]/sin62.5=56 1mm (@)
From Eq. (F.14b), it follows that
U*=334cm/sec (a)
Hence (F.16)
R./5 U ;A/v 163 6450 (b)
and from Eq. (F.13), it is concluded that
§=5. 5m ' (F.17)

In many cases, including the aforementioned run, the difference
between the boundary layer thickness based on Bauer's method and the observed
value (based on the presence or absence of any variation in manometer readings
over the long time interval) was found to be approximately egual to the
diameter of the pitot-static tube. It must be mentioned, however, that the
boundary layer thickness was unimportant as far as the calculation of

coefficients of energy and mcmentum was concerned.
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F.3 FLOW CHARACTERISTICS OF REGIONS II AND III

F.3.1 Bed Pressure Field in Regions IT and TIIT

The pressure on the bed was measured by means of the piezometric
tapping points provided on the channel bed. Fig.F.9 shows a typical bed
pressure field in regions II and IITI. In this figure, section 1 corresponds
to the row of the pressure taps which was close to the channel outlet, sectioh
2 represents the row of pressure taps which was positioned along the channel
centre line, section 3 denotes the row of the pressure taps which was close
to the side wall and L. represents the jump length (the distance between
the toe of.the forcedlaydraulic jump and the retaining wall). Fig.F.9 clearly

indicates that the pressure on the channel bed was adverse in the downstream
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direction. Furthermore, apart from a region very close to the retaining wall,
in a transverse cross-section (section parallel to the retaining wall), the
bed pressure along section 1 was considerably lower than that along sections

2 and 3. In the impingement region, however, the bed pressure on the channel
centre line was greater than those of the two other sections. This is

because at the middle of the retaining wall, the forward flow along the channel
centre line (which had a negligible redirection) interacted with the flow

that was redirected from the area adjacent to the side wall.

The surface profiles in regions II and III along the three sections
1,2 and 3 were measured by means of the point gauge. However, because of
the fluctuation of the water surface, the surface measurement at any location
was repeated at least three times and the arithmetic mean of the three measu-
rements was considered as the reliable value. It can be seen from Fig.F.9
that apart from a region close to the retaining wall, the observed surface

profiles lie somewhat above the bed pressure profiles.

F.3.2 Pressure Field

In this investigation, it was assumed that the pressure distribution
in region 1II was hydrostatic. However, it appeared difficult to accept this
assumption in view of the flow curvature and the air entrainment in the forced
hydraulic jump. To resolve this doubt, a detailed study was made of the
static pressure field for run b08pl. The pressure at various points was
measured by the use of the static openings of the pitot-static tube which was

used for the velocity measurements.

With regard to thg pressure field measurements by the pitot-static
tube, it is known that the static reading is somewhat sensitive to the angle
of yaw if this angle is greater than approximately 12°. 1In region II, the
angle of attack to the horizontal pitot-static tube could only be in excess
of ‘this value in a region far away from the channel bed and mainly near the
top of the forward flow where the velocity vectors were considerably inclined
with respect to the channel bed. Fig.F.10 shows a typical pressure field in
region IXI. In this figure x denotes the longitudinal distance from the
retaining wall in the upstream direction. However, although the measurements
shown in this figure cannot be regarded as very accurate because of turbulence,
they are accurate enough to indicate that the pressure distribution was not
precisely hydrostatic at all points in the forced hydraulic jump.At the toe of
the forced hydraulic jump,thepressure distributionwashydrostatic because the
velocity vectors in regionIwere all parallel to the channel bed.However, the static

pressure distribution in region IImay be represented by a curveas shown in Fig.F.11
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In this figure y is the vertical distance above the channel bed, p is the
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corresponding static pressure, h is the water depth and p denotes the corres-

ponding bed pressure. The lower part of the static pressure distribution

is the normal hydrostatic relationship.

~ Rouse et al. (1959), in their

detailed investigation of air hydraulic jumps simulating water counterparts,

concluded that the pressure distribution in the hydraulic jump could reason-

ably be assumed to be hydrostatic and that the quantity of air in suspension

was actually insufficient to change appreciably the density.

The hydrostatic

pressure distribution assumption has been made by many investigators in their

studies on different types of hydraulic jumps (McCorguodal and Regts,1968).

surface
profile

plezometric pressure
on the bed

Fig.F.11 Pressure field in region II
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F.3.3 Velocity Distributions in Recicn II

An extensive investiéation of the time mean velocity distribution

in region II was performed with the aid of the czlibrzted pitot-static tube.
_With regard to the velocity measurements by the pitct~static tube, first the
pitot reading was quite insensitive to the angle of attack. The pitot-static
tube gave the resultant velocity at any point and was assumed to be horizont-
al in this ﬁork. This assumption should only be appreciably in error in

the region close to the top of the forward flow where the velocity vectors
were considerably inclined with respect to the channel bed, and in the back-
ward flow on top-. In this investigation, no measurements were made in the
backward flow bf region II. Secondly, due to the presence of an adverse
pressure gradient in region II, a pressure gradient correcticn, as was defined
in Section E.6.5.2, had to be made to the velocity measurements. "Thirdly,

it was possible that air entrainment in the forced hyérzulic jump might inter-
fere with the wvelocity measurement. For this reason, the flushing arrange-
ment of the pitot-static tube was used except during the time when the cbser-
vations were being made. It was found that the air bubbles present in the

forced hydraulic jump seldom presented difficulties.

line of
demarcation

the rollerj

............... D3 PGP 2 B ST
...........................
.................

Fig.F.12 Flow in region II

Considering all these aspects, it should be noted that the measured
~velocities in the region of the line of demarcation (between the forward

flow end backward flow Fig.F.12) should be in errcr because of the pronounced
angularity‘ of the flow and the high level of turbulence (average intensity of

. . ‘ .
“turbulence in‘the surface roller is greater.than15% (Resch &nd Leutheusser,1971)) .

* Laser Doppler Anemometry (L.D.A.) systems are the best available
method for measurement of flow velocities without creating any disturbances
within the flow. Unfortunately the cost of a complete system was beyond the
scope of this research. Attempts at measuring the flow characteriswics of a
hydraulic jump by means of a hot-film anemometer have not proved to be

.successful, chiefly because of the presence of air bubbles which form fluid
discontinuties. ’
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Figs.F.14 and F. 15 show typical velocity profiles in region II.
In these figures, X denotes the longitudinal distance from the retaining
wall in the upstream direction. In region II, due to the energy loss and
the presence of the adverse pressure gradient in the downstream direction,
the flow had a decelerative characteristic over a major part of the forward
flow. The maximun velocity of each section, which was an important charac-~
teristic of the flow in region II, experiencied the decelerative nature of
this region and decreased from the toe of the forced hydraulic jump as it
approached the retaining wall. The acceleration in the upper part of the

velocity profile was probably due to the behaviour of the surface roller.

A careful study of the time mean velocity profiles in the forwarad
flow of region II revealed that the magnitude of the mean velocity U
increased from zero at the channel bed to a maximum velocity gax at y=§,
where y is the vertical distance zbove the channel bed, it then decreased

as y increesed becoming zero at some large value of y (Fig.F.13). The

T
outer layer
(free mixing region)

9
2 U==Umax
2
61
Umax inner layer
A | {boundary layer)

Fig.F.33 Velocity profile in the forward flow of region II.

region from the bed to the maximum velocity level can be called the inner
layer or boundary layer since it appears to have a structural similarity to
a boundary layer. The region above the boundary layer can be called the
outer layer (free-mixing regiocn). These two regions overlap at the point

of maximum velocity.

F.3.3.1 Universal Similarity Curves of the Velocity

Distributions in the Forward Flow of Region II

The concept of similarity is of great assistance in synthesizing
a large number of mean velocity measurements. For this reason, an attempt

was made to discover whether the mean velocity distribution in the forward
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flow of region II is self-similar. This was done by replotting the velocity

distribution data in a dimensionless form with U]gax versus y/Gyinwhichg A
is the maximum velocity at any section; &, is the valve of y in which
IJ=§E§€ndligi5 negative (Fig.F.16). Generally, gax and 61 can be named as
thezvelocizg scale and length scale respectively. It was found that the

: experimentai points dictate a well-defined single curve. This implies that
the velocity profiles in forward flow are geometrically similar despite the
redirection of the forward flow, differing Froude numbers, differant states 6f
development... etc at the toe of the spillway. Mathematically, this means

that a curve £(n) defined as

U
E(n)= I {2)
max
where (F.18)
=L A (b)
=3

1

exists whose co-ordinates are constant and indevendent of the historYVOf the
flow. The curve of the plane turbulent wall jet issuing into the same stat~
ionaxy fluid of semi—iﬁfinite extent on a smooth boundary under zero pressure
gradient, known as the classical wall jet, is also plotted in Fig.F.16. It
can be seen that the similarity curve in region II is slightly different from
that of the classical wall jet up to n=1, beyond which it falls off more
quickly than the classical wall jet and lies somewhat below this curve,

- reducing £(n) to zero at n=1.5.

The velocity profiles in the outer-layer region were tested for
similarity by plotting U/Hax against n= %IE%-along with the corresponding
curve of the classical wall jet (Fig.F.17). It can be seen that the mean
velocity profiles in the region external to the inner layer are geometrically
similar despite the redirection of the forward flow, differing Froude numbers,
different states of development...etc. at the tos of the spillway anl that
the data agree reasonably well with the corresponding curve‘of the classical

wall jet.

It is at first sight surprising that the universel similarity curve
of the velocity profiles in the forward f£low of regiocn II showed & slight
difference from the corresponding curve of the classical wall jet whereas the
universal similarity curve of the outer layers showed a reasonably good agree-

ment with that of the classical wall jet. This is probably due to the effect
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n rogion II.

of the adverse pressure gradient in iLhe downstream directicn ir
The reason is that the adverse pressure gradient decreased the momentum in

the boundary layer. This means that although the pressure gradient had

practically the same value through the cross section of the flow, its most
significant effect was on the water flow close to the channel bed (inner

layer). This is because the water flow close to the channel bed had less

momentum than the water flow further out.
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In the inner layer the mean velocity distribution was approximated

to a functional form by Prandtl

u._(x
5 = ( L ) (F.19)
max

in which n is an exponent which varies in the streamwise direction due to
the pressure gradient (Narayanan, 1975). A reanalysis of the velocity
distribution data of all runs in the boundary layer is shown in Fig.F.18,
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with U/ga.x versus y/6 in conjunction with one-seventh power law curve.

can be seen that for all runs n is less than 1/7. In fact, in the inner

It

layer, the experimental points U/gax versus y/6 appear to fall into a very

thick band which is confined by two power law curves having the exponents
equal to approximately 1/8 and 1/12 (Fig.F.19).
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F.3.3.2 Variaticn of the Velocity

Scale and the Length Scale

Earlier in this thesis it was concluded that redirection of the
forward flcw along the channel centre line in region LI was a minor feature
of the flow. Hence, for practical purposes, it could be assumed that the

forward flow per unit width along the channel centre line remained parallel

tb the channel centre line.

The maximum velocity gax at any section was an important charac-
teristic of the flow in region II. The variation of gax/Um with xj/dm
is shown in Fig. F.20, in which Um is the average velocity of supercritical
water flow at the toe of the spillway, x. is the longitudinal distance from
the toe of the forced hydraulic jump in i downstream direction along the
channel centre line and dm is the depth of the supercritical water flow at

the toe of the spillway along the channel centre line. The corresponding
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Fig. F.20 Variation of the velocity scale

VALUE OF Yax’Yn
[

curve for the classical wall jet is also plotted on this graph. It can be
seen that the rate of decay of the maximum velocity in region II is faster
than that of the classical wall jet. This indicates the efficiency of eneragy
dissipation in the forced hydraulic jump.

The variation of the dimensionless length scale 61/dm with xj/qm
together with the corresponding curve for the classical wall jet is shown
in Fig.F.21. From this figure, it can be seen that, due to the presence of
an adverse pressure gradient, 61/6m increases faster than in the case of the
classical wall jet. This means that the maximum velocity in region II, which

already decayed at a faster rate than the corresponding rate for the classical
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wall jet, was also located at a height above the bed which was greater than

the corresponding height for the classical wall jet. This point is of great

significance

in the reduction of bed scour.

F.3.3.3 Prediction of the Surface and Energy Profiles

The procedure required to predict the surface profile and energy

profile of region II along the channel centre line is based upon the follow-

ing assumptions

a)
b)

c)

q)

the friction at the channel bed is negligible.

the momentum and energy associated with the backward flow

of the surface roller is negligible when compared with corres-
ponding quantities for the forward flow. This assumption has
been found to be approximately true for a submerged hydraulic
jump. (Lieu,1949).

despite the obgervations shown in Fig.F.11, the pressure dis-
tribution is assumed to be hydrostatic over all the forced
hydraulic jump.

the loss of momentum and energy per unit width of the channel
in the downstream direction along the channel centre line due
to the redirection of the flow is negligiblé. This is because
the redirection of the flow in region I and in the forward flow

of region II along the channel centre line was negligible.
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At the toe of the spillway, the pressure force plus the momentum

per unit widthmo, and the specific energy e, can be written as

2 . 2
mo=41pgdm+bpumc1m {a)
2 (F.20)
¢o=dm+aUm/2g (b)

where Um,dm,B and o are the average velocity, the average depth along the
channel centre line, the momentum coefficient and the energy coefficient
respectively of the supercritical flow at the toe of the spillway, p denotes
the mass density and g represents the acceleration due to gravity. Eg.(F.20b)

can be rewritten in a simpler form
2
e =d (1+0.5 Fr) (F.21)
o m

where Fr is the Froude number of the incoming supercritical water flow. At
a section located on the channel centre line and at a distance xj from the
beginning of the forced hydraulic jump in the downstream direction, the
pPressure force plus the momentum per unit width s»7 and the specific energy

€ can be written as

8
2
me= % pg ho+ | pU° Gy <a>(
°© {(F.22)
1 5. .3 f
= h+ T f 2 Udy (b)
mm © 29

where h is the water depth at this section, 62 is the corresponding thickness
of the forward flow and U is the magnitude of the velocity at a distance
y a@bove the channel bed at this section. Using the velocity scale gax and

the length scale 61, the above relationships canbe rewritten in the following

forms
2 2 1.5 2
m=spgh,+pgax51£ £9(n) dn (a)
U3 61 s s (F.23)
= pq BEX 1 é 2 £2(m)dn . (b)

2gUmdm

The integrals in the above relationships were calculated by the
use of the trapezoidal rule from the similarity curve in Fig.F.16. The
magnitude of the integral of Eg. (23a) was approximately 0.71 and that of
Eg. (23b) was 0.6. Howéver based on the aforementioned assumptions, it can

be written that

72=972 (a)
© (F.24)
or 2 2 2 2
9 = (b)
% pg _ BDUm dm Y pgh” + 0.71p gax 61 b



The expression for the specific energy can be written in a dimensionless

form as follows

v s,
h+0.6322 Z25__-
e _ 29 Umdm (F.25)
)
o 4 (1+0.5 Fr)

Relationships (F.24b) and (F.25) can be reduced to the feollowing forms

2 U §
h 2 _ Fr max 2, 1
(3 ) ““2?[3-0'7“6—) (5] (a)
m m m
2 [y 35 (F.26)
h Fr max 1
- + 0.3 — -—
d U d
e _ m m m )
- = (b
o 1 + 0.5F%

The above relationships clearly indicate that the surface and
energy profiles in region II along the channel centre line are functions
of the Froude number.  In Section F.4.1.1, a mathematical relationship
(Eq.F.40) is presented to aid the prediction of the wave height in the
amplitude domain at the middle of the retaining wall. The calculated

surface profile at any point from Eg. (F.26a)should be less than the average
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wave height at the middle of the retaining wall. The above relationships were
evaluated for run a25pl and are plotted in Figs.F.22 and F.23. The observed

surface profile is also plotted in Fig.F.22. It can be seen that for values

of xj/dm up to approximately 3.5, the predicted points lie slightly above
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the observed surface profile; beyond this value of xj-/dm the calculated
points occur at considerably lower positions than the corresponding observed
surface profile points. The deviation of the predicted surface profile from

the observed surface is due to the inherent errors in the four basic assum-

ptions made in this procedure.

The shortcomings of the above method are; firstly, it does not
allow for the effect of the changing position of the retaining wall with
respect to the spillway in the prediction of the surface and energy profiles
of region II, as the friction at the channel bed was assumed to be negligible.
Secondly, the above procedure does not give the location of the toe of the
forced hydraulic jump,i.e., where the surface profile actually starts .Further-
more, the predicted points of the surface profile close to the end of the
region II occur at considerably lower positions than the corresponding
observed surface profile points. For practical purposes, however, it can be
assumed that the surface profile along the channel centre line from the toe

of the forced hydraulic jump to the retaining wall can be approximated by the

following dimensionless equation

h—dm X5 .2 iy
3 -—-Al (-a—) +A2(-E_) (F.27)
m m m

where A1 and Az are dimensionless coefficients. These coefficients can be
evaluated by using the first two predicted points of the surface profile
(Eq.F.26a) corresponding to xj/dm =1 and x,/dm = 2. For run a25pl the
coefficients of Al andA2 were found to be egqual to 0.043 and 0.47 respectively.
Using Eq. (F.4OL the average wave height at the middle of the rétaining wall
was found to be equal to 176mm. The value of xj from Eq. (F.27) corresponding
to h=176mm was 256mm. The measured distance of the toe of the forced

hydraulic jump from the retaining wall was Lj = 237mm.
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It must be mentioned that the description of the surface profile
along the channcl centre line from the toe of the forced hydraulic jump
to the retaining wall by Eq. (F.27) was purely baséd on observation of the
surface profiles for different test runs. Furthermore, the calculation of
the enexgy profile by Eq. (F.26b) is only valid for region II. In region III,

the flow suffers from separation and some energy is dissipated by separaticn.

F.3.4 Governing Equations of Motion inthe Forward Flow

of Region II andthe Mathematical Condition for Separation

The applicable equations for an analytical description of the
forward flow per unit width in region II along the channel centre line are
the steady state Reynolds equations and the corresponding continuity equation.
Herein the region is considered as an essentially two-dimensional phenomenon
in the x.-y co-ordinate system where xj is the longitudinal distance from the
toe of tﬁe forced hydraulic jump in a downstream direction along the channel
centre line and y is the vertiéal distance above the channel bed. If U and
V are the turbulent time mean velocities in the x,andy directionrespectively,
and u and v are the corresponding fluctuations, tgen the Reynolds eguations

can be written as

U 3U_ 129p ’u | d'U du AUV
U 5y~ P . ( B%fz + TE )-( ij + 3y ) (a)
(F.28)
3V av __ 129p 32 v 32y W e
v % TV Ty (o2 T e )-(ij- v ) ®)
J

in which v is the kinematic viscosity and p is the mean pressure at any point,

The time-averaged continulty equation is

U v
% ey =0 (F.29)

With regard to the nature of the forward flow in region II, it
can be assumed that, firstly, over a major portion of the forxward flow
U >> V. Secondly, the gradientsof the quantities in the y direction are

generally much larger than the gradients of the corresponding quantities in
. . ]
the x5 direction, for example 5‘% >> g—:: Furthermore, it is assumed that the

Pressure distribution is hydrostatic oVer all the forced hydraulic jump.
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Using these assumptions, the equations of the motion can be reduced

. o the form

020 4y o122, 2% sw (a)
*; 4 P X; dy Y Xg
(F.30)
g=-L138 _ 23
o v oy (b)
By combining the above equations
U U 1 dp U duv 3 5 %
il _— - == v - —_— . = - (F.31)
Uaxj.+vay pax. T Vigr T3y ij.(u V)
J

The last term in the above equation is smaller than the other terms and

could be neglected. The fifth term of Eg. (F.31) can be rewritten as

Juv .1 ] —_ 1 3t
- mtemem— I e Py gu = — { °
v 5 ay( puv) 5 —Jay (F.32)

where Te stands for the turbulent shear stress. With hydrostatic pressure

distribution assumption, the equations of motion reduce to the following

form
3U U _ dh 3°U | 3Tt (a)
u ij v dy 9ax, *V dy? + 3y
(F.33)
.a—g. + E.Y. =0
0xX. v
3 (b)

where )1 is the flow depth.

F.3.4.1 Mathematical Condition for Separation

The adverse pressure gradient in region II decreased the momentum
in the boundary layer. The low-velocity water close to the channel bed in
the boundary layer had less momentum than that farther away. Towards: the
end of fegion II (near the retaining wall), the development of the boundary
layer produced a thicker layer due to the steep adverse pressure gradient.
Consequently, in this region, there was more low~velocity water close to the
channel bed. This was more sensitive to the opposing pressure force and
so when its momentum was reduced étill more by the net pressure force, the
water near the channel bed was soon brought to a standstill. The water
was no longer able to follow the channel bed and therefore broke away from

it. This breakway which is usually termed separation first occurred at the



point where the variation of the velocity in the direction pexpendicular to
the channel bed was zexo. This condition can be expressed mathematically by

(9_2 =0 (F.34)
3y y=0

At the separation point on the channel bed, U=V=0, and the egquation of

motion (F.33a) will be reduced to the following form

ah _ v, 3%U
dx; g ay? y=0 (F.35)

[

The above relationship represents the mathematical condition for
the separation of the forward flow from the bed. It can be infered from
Eqg. (F.35) that the curvature of the velocity profile at the onset of separation
on the channel bed must be positive (since%%%}ﬂ). However, from the channel
bed towards the boundary layer edge, %g-decrééses at a continuousl& lesser
22y

rate. This means that.s-;‘<0 near the edge of the inner layer. Hence, at

infle
ction
point

point of
separation

....................

-----------------------------

the onset of separatioh, there must be an inflection point on the velocity

profile in the boundary layer.

The boundary layer separation of the forward flow of region II
occurred very close to the retaining wall, B&Bs a result of the reversed
flow in the separated zone, large irregular eddies were formed in which a
great deal of energy was dissipated. The separated boundary'layer tended
to curl up in the reversed flow. Finallf, the flow impinged violently on
the retaining wall and became parallel to it; resulting in a comolex flow

pattera at the wall.
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F.3.5 Pressure Distribution on the Retaining wWall

The mean retaining wall pressure was measured by means of the
pressure tapping points provided on the retaining wall. Figs.F.25,F.26
and F.27 show the pressure distribution on the retaining wall for several
test runs. It must be noted that the pressures measured by the tapping
points which were subjected to the fluctuating waves at the retaining wall
are appreciably in error. This is because the pressure fluctuations in this
region were as large as the mean. This fact is probably responsible for

the increase in the pressures indicated by the upper tapping points.

Due to the complex behaviour of the flow in the impingement region,
the interprefation of the pressure distribution on the retaining wall is
difficult. However, Figs. F.25, F.26_and F.27 indicate that the maxinunm
pressure on the retaining wall was concentrated arxound the middle of the
retaining wall. This is because of the interaction of the forward f£low along
the channel centre line (which had a negligible redirection) with the flow
that was redirected from the area adjacent to the side wall. It can ke seen
from these figures that the pressures near the outlet drop considerably.
This is due to the considerable redirectionofthe flow near the channel outlet.
Furthermore it can be seen that with a constant discharge of inccxing flow,
the maximum pressure on the retaining wall was not changed appreciably by
changing the position of the retaining wall with respect to the spillway

{2although the pressure distribution on the retaining wall was changed).
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F.4 WAVES AT THE RETAINING WALL

vDuring the initizl stages of this investigation, several wave height
records, measured with respect to the channel bed, were tzken at a fixed
lIocation along the retaining wall and under identical flow ccnditions which
yvielded different water level records. The precess had a random element in
its structure and could therefore be described as a stochastic process. At
a fixed location along theretainingwall and at any time t ,a number of different
~values of the water level vy(t) above the channel bed were possible. This
indicated that a wave height record obtained‘at a point along the retaining
wall was basically one example of an infinitely large number of water level
records which might have occurred. The variation of the wave height records
at a given point along the retaining wall cculd have been described by a
random process {y(t)}, where { } denctes an ensemble of sample functions and
of which y(t) was one possible reazlisation. Mathematically the stochastic
Process could have been defined as a collection of random variablesfy(t»tsTLv

where T is the time over which the process was defined.

The study of a stochastic process is not a study of a simple
krealisation but of the collection of realisations in the form cf the random
vaxiable'{y(t)}. In this investigation, it was assumed that the wave height
at a given point along the retaining wzll was ergodic. This meens that the
sample means and autocorrelations were equalAfor all possible realisations,
the semples being taken in time. In this case, the statistical properties
could be derived from only one realisation of the process, y(t). . Plates
XIII, XIV znd XV show some typical simultaneous continuous records of fluc-
tuating wave heights at three different locations along the retaining wall
made by the ultra-violet recorder cn photoegraphic paper. In these plates,
as was described in Chapter E, wave recording probe 1 corresponds to the
probe which was close to the channel outlet, wave recording probe 2 repre-
sents the probe which was positioned in the middle of the retaining wall and

wave recording probe 3 denotes the probe which was close to the side wall.

The wave height records made in this investigation were continuous
traces of water level. To study their characteristics, the records were
digitised in the same manner as was detailed in Chapter E, i.e. by reading

off the values of the traces at each discrete time interval At.
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F.4.1 Analvsis of the Waves in Amplitude Domain

For a digitised wave height record Yi of size N, the expected
proportion of population values greater than ¥y is equal to the ratio of the
descending ranked orderofyidivided by one more than the total number of data
points, no matter what form of the continucus probability density function
in the population. The sample size N for all wave height records was 1024
with the sampling interval At=0,.025 sec. The percentage P of wave heights
with elevations greater than or egqual to a specified value, was calculated
and then plotted as an ordinate with the retaining wall height wh {(the wave
heights) as the abscissa. Figs. F,28, F,29, ¥.30, F.31, F.32, and F.33 show
the statistical variation of the wave heights in the amplitude domain with
each curve having its own distinct S-shape, The probability of exceedance
of the wave height above the retaining wall associated with the maxzimum wall
3%53- = 0.0976% and with the minimum wall height was %g§§-=99.9%.
It must be noted, however, that due to the sampling error, the uncertainty

height was

of the experimental points at the upper and lower ends of the S- curves
(maximum and minimum wall height) was greater than the other points of the

S- curves.

A number of conclusions can be made by examining the statistical
variation of the wave heights in the amplitude domain for differenttestruns.
In the first instance, the fluctuating water level at the middle of the
retaining wall was generzlly higher than at other locations along the retaining
wall. As was concluded earlier, this is because at the middle of the retaining
wall, the forward flow along the channel centre line (which had a negligible
redirection) interacted with the flow that was redirected from the area
adjacent to the side wall. Secondly, with the retaining wall at a fixed
position with respect to the spillway, an increase in the discharge of the
incoming flow ceused the wave heights at the retaining wall to increase
(Fig.F.28(a)). Thirdly, with a constant discharge of incoming flow, when
the retaining wall was fixed in a position closer to the spillway, the wave
heights at the retaining wall increased due to the friction to the flow being
less. However, this increase in the wave heights was found to be gquite small.
For example, Fig.¥32(a) reveals that by reducing the impingement length by
28% and 55%, the wave heights in the middle of the retaining wall increased,

on average, only by 4% and 7% respectively.
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F.4.1.1 . Universal Similarity Curve for the Distribution of

the Wave Height at the Middle of the Retaining Wall

Tne significant variables influencing the behaviocur of a plane

turbulent water jet of finite dimensions deflected by a transverse wall are

dm' the depth of the supercritical water flow at the tece of the

spillway along the channel centre line.

U_, the average velccity of the supercritical water flow at the

toe of the spillway,
Z-, the impingement length,
b . the impingement width,
e . the.mass density of water,
g , the acceleration due to gravity,
v » the kinematic viscosity of water;
8 and o, the momentum and eﬁexgy coefficients respectively of the

incoming supercritical water flow at the toe of the spillway.

According to Buckinchem 7 theorem, the aforementiocned variables
can be replaced by six dimensionless groups, namely, the Froude number,
the Reypolds number,'thé coefficients of energy and momentum(all pertaining
to the incoming supercritical water flow) and two geometrical ratios as

follows

U UnSn b £
Fr=‘—_—"—', R.-': z G,B,'a ,'a- (F-36)
Ygd_/u 3 v m m
m
where gﬁ is the aspect ratio of the water jet and é- is the dimensionless
m
impingement length. The Reynolds number Rj in all test runs was greater

than 104 and hence its effect on the characteristics of the flow could be
assumed to be negligible (Delleur,1954). Eence, the governing flow parameters

can be replaced by five dimensionless groups as follows

U
£
S R I .37
Ygdm/u m m
An attempt was made to discover whether the prcbability graphs
in the middle of the retaining wall were similar. This was achieved by

replotting the probability graphs data in a dimensionless form with the
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probability of exceedance of the wave height above the retaining wall P,

againstéf, wherecg%is defined as

1
_ Wh 2 11.5 %n 0.15 (F.38)
I= 5 e
W m

In the above relatienship, wp is the retaining wall height and du,is the‘%ean
’ .
momentum depth associazted with the water jet at the toe of the spillway which

was calculated from the following relationship

2 2 2
2 pgd +pBU_d = L pgdw

A
]

()

or ‘ . (F.39)
dy =94,/ 1+28/a FZ (b)

The left hand side of the relationship (F.3%a) is basically the pressure
force plus the momentum per unit width of the water jet at the toe of the

" spillway. As was mentioned earlier, the loss of momentum per unit width

in the downstream direction alcng the channel centre line in regions I and
II due to the redirection of the flow was negligible, This is because the
redirection of the flow along the channel centre line waé a negligible
feature of the flow. Furthermore, with a constant discharge from the spill-
way, the magnitude of the mean momentum depth associated with the water jet
at the toe of the spillway remained approximately the same when changing the.
retaining wall position with respect to the spillway. Fig.F.34 shows that
all the experimental data condensedinto a single curve described mathematically

by
14.975

- (0.8884) | |
I g | (F.40)

in which P is expressed as a percentage. From Fig.F.34, it can be seen that
the lower end of the above curve approaches the P=0 axis asymptotically.This
means that for a condition in which the wave heights never overtop the
retaining wall, the magnitude of the retaining wall height must be wy = =.
Also, for P = 100%, Eg. (F.40) yields whf=0(mathematically,noretaining wall).

The average wave height at the retaining wall corresponds to P = 50%.
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F.4.1.2 Coefficients of Dispersion of the Wave Heights

The coefficient of dispersion associated with a digitised wave

height record yi of size N and mean §'may be written as

N
Uz v, »°1/w-0)"
i=1 | ‘
= F.41
Cy 7 ( )

It can be seen from the above relationship that theccefficient of dispexsion
of a wave height record indicates the average wave height measuredwithrespect
to the mean water level divided by the mean watex level,; the mean water level
¥y and yi being measured with respect to the channel bed. Table F.2 shows
that the coefficients of dispersion of the wave heights at the retaining wall

varied between 5.6% and 10.7%.

Wave Wave - | wave
Rﬁn Recording Recording | Recording

Probe 1 Probe 2 Probe 3
alépl 0.083 0.083 0.099
azspl 0.076 0.073 0.077
a36pl 0.066 0.056 0.070
alép2 0.094 0.080 0.087
a2sp2 0.078 0.075 0.074
a3ép2 0.063 0.056 0.061
aldp3 0.095 0.077 0.077
a25p3 0.072 0.0702 0.069
a3ép3 0.062 0.054 0.060
b08p1 0.091 0.092 0.101
bllpl 0.091 0.096 0.107
bldpl 0.089 0.1 0.092
bl17pl 0.021 0.076 0.085
bldp2 0.097 0.02 0.094
bldp3 0.084 0.092 0.091

Table ¥.2 Coefficients of Dispersion of the wave heights.
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F.4.2 Analysis of the Wave Heights in Time Domain

The correlogram was the most useful tool to provide information
concerning the properties of the wave height records in time domain. For a
wave height record, the actual times ti associated with'the observations
were unimportant; only the difference tj:-tj known as the lag was significant.
The coefficient of correlation . associzted with the lag T of a digitised
wave height record ¥y of size N and mean §'was calculated according to the

Eg. (C.50) as

. N~T _
Iq—-rizl(yin y) (yi+rn y)
r = . (F.42)
T N R
vy Z (v.—- ¥y )
Nz 74

Figs.F.35, F.36, and F.37 show the correlograms of the wave height
records of size N=1024 at three different positions along the retaining wall
for several test runs. In these figures, the autocorrelation coeificient
r_ was plotted as the ordinate and the leg T as the abscissa.As was explained
earlier, each of the three simultaneocus records of fluctuating wave heights
measured at three different locations aleng the retaining wall may be con-
sidered to be a sample from a populaticn time series consisting of an infinite
number of observations. Therefore r_ was an estimate of Por the populaticn
7th order serial correlaticn. The estimated correlograms were all subject
to sampling errors, particularly for the estimated values of T where the lag
T was laerge. This means that for a fixed value of N (during this investiga-
tién, N was always equal to 1024), the variance of rT increased as T increased,
since the number of pairs of observations used to determine rT decreased. The
value of r. foxr T>§b = 102 time intervals (each time interval was equal to
0.025sec) were not determined. The 103 correlogram ordinates were calculated
for each wave height record and the adjacent points were connected by straight

lines.

A close study of the shapes of the correlograms of the wave heights
nezasured at three different points along the retaining wall shows that the
correlogram ordinate for the lag zero was egual to one for all test runs.

This is because the correlation of a set of ebservations with itself was unity.

However, this precperty holds true for any time series. The values of ¥ for
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T % 0 reflect to some extent the structure of the wave heights. All the

it
jury

correlograms show a rapid decay of the autocorxrelation coefficient fromrT_O
after only a few time steps. Such a trend is characteristic of stationary
random wave heights having a wide band of frequenéies. The regularity of
peaks and troughs in the correlograms reflects the pseudo-periodic behaviour
of the wave heights. The correlograms approach their first zero value around
the T=8 time intexrval. They remain negative for a considerable duration of
the lag time. This implieé that macropulsetions of strong intensity were

present in the wave heights at the retaining wall.

F.4.3 Analysis of the Wave Heights in Frequency Domain

Power spectral density function was the best available method for
considering the freguency properties of wave height recoxrds. In this investi-
gétion the spectrum was used essentially to detect non-random components in
a wave height recoré. A property of a power spectrum, as was described in
Chapter C, is that if there are periodicities in the water level record y(tj.,
they appear as spikes in the spectrum. The amplitude of each spike is pro-
portional to the.contribution of the periodic component to the variance of
the wave height record. A peak in the spectrum signifies the presence of a
cyclic component. The underlying theoretical background for the calculation
of power spectral density functions was discussed in Chapter C. In summary,
for each wave height record, first, a Hanning window was applied to the first:
and the last 12.5% of the digitised wave height record. Secondly, since the
210

sample size of all wave height records was N=1024= » the Fast Fouriex

Transform could be applied to the tapered wave height record to achieve the
raw periodogram ordinates. Thirdly, the raw periodogram was smoothed using
the weightsl/4, 1/2, 1/4 (3 point smoothing procedure) to estimate the power
spectral density function G(f) of the wave heighﬁ record. Each power spectral

density function was then normalized by dividing its ordinates by the variance
of the digitised wave height record.

The Nyquist frequency for all wave height records was equal to
fN= §%£= 20.3Hz . An examination of all the power spectra made in this inves-
tigation in the range f£=0 to £=20.3Hz showed that the ordinates of the power
spectra beyond the frequency approximately equal to f=6Hz were very small.
This means that the ordinates of power spectra near the Nvgquist frequency

centributed very little or nothing to the total variance and aliasing never

occurred.
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Figs. F.38, F.39, and F.40 show the normal power spectral density
functions of the wave height records of size N=1024 atthree different locations

: ~ 2
along the retaining wall for several test runs. In these figures G(£f)/s was

plotted as ordinate and the frequency £ as abscissa, where s 1is the variance

of the wave height recdrd. There was one feature which dominated all normal

spectral density functions of the wave height records at the retaining wall,

namely, they all had many peaks and troughs in a wide band of frequencies

{(less than 6Hz). The ordinatesof all the power spectra between the frequency

f=6Hz and f=fN were very small.
associated with the impingement of the flow on the retaining wall were not

All these aspects implied that the waves

entirely random. In each spectrum, significant ordinates were spread over
a range of frequencies; the variance was thus not concentrated at a single
frequency as would be expected for a truly periodic process.2 pseudo-pericdic
behaviour of the wave heights was detected in their correlograms. This was

in fact observed in the water level records itself (see Plates XIII, ¥IV and

¥V) and was verified by their power spectra. However, in all spectra, a

large proportion of the variance was accounted for by fregquencies f less than

approximately 3Hz.

The estimate of the spectrum from a sample size record ecual to
1024 was merely one from an infinite numbers of possible samples of the same
or of different sizes. However, because each estimated spectrum was one of
many possible estimates, there was a certain amount of sampling error assoc-
iated with the estimate. In the initial stage of the investigation, some
tests were made to examine the variability of the power spectra at the re-
taining wall. A wave height record of size 1024 was divided into two equal
parts of 512 points and the power spectra of the smaller records were ccm-
pared with that of size 1024. It was observed that while all three spectra
showed the same range of significant frequencies, there was a good deal of
variation in the magnitude and location of the peaks. This test was repeated
and confirmed for some other wave height records at the retaining wall. The
conjecture as to whether these differences were inherent entirely in the waves
themselves (eg. caused by an unstable process) or are a result of sampling
error could only be ascertained by analysing spvectra from larger samples. It
is emphasized, however, that although the number and magnitude of the peaks
of a power spectrum were affected by sampling error, the range of significant

frequencies was bounded by fairly definite limits, which could be estimated

quite accurately using a sample of 512 points or rore.
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F.5 SUMMARY OF CONCIUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH

F.5.1 Summary of Conclusions

The phencmena associated with a water jet of finite dimensions
igsuing from an overflow spillway when it is deflected by a smooth vertical
transverse wall which is perpendicular to the initial flow direction was
investigated both experimentally and analytically. The entire flow was
divided into three different regions. In region I, which began at the toe
of the spillway, the»#ater depth remained approximately constant apart from
a region adjacent to the outlet where a degree of laferal discharge was
observed. The state of development of the supercritical water flow at the
toe of the spillway was guasi-potential in all tests. In region II a forced
hydraulic jump with a lateral discharge was observed. In region III the flow
impinged violently on the retaining wall and became entirely parallel to it,
resulting in a complex wave pattern at the wall. There was a surface and
bed préssure gradient in a transverse cross-section (in a plane parallel to
the retaining wall) in both regions II and III.In region II, near the channel

outlet, the bed pressure and the surface profile fell considerably.

In region I and in the forward flow of region II,the flow remaired
two~-dimensional with the velocity plane perpendicular to the channel bed and
at an angle to the channel centre line. The redirection of the flow along
the channel centre line in both regions I and II was found to be small enough
such that for practical purposes it could be assumed that the flow per unit
width along the channel centre line in regionlI and in the forward flow portion
of region II remained parallel to the channel centre line. The secondary
motions in region I affected the distribution of velocites and as a result
the boundary layer thickness and the velocity profiles were not indenticalat
any one cross-section. The velocity profiles in the turbulent boundary layer
in region I could be approximated by a power law, where the power varied

approximately from a minimum of 1 to a maximum of %. . The average powexr h

11
for the experiments was g——-which indicated that the average behaviour of the

boundary layer was in guite close agreement with % power law.

The mean velocity characteristics in the forward portion of region
II along the channel centre was investigated in a form relevant to a two-
dimensicnal plane turbulent wall jet.The mean velocity in the forward flow was
found to be self-similar when a velocity scale and a length scale were used.
The similarity curve showed some deviation from the corresponding curve of

the classical wall jet. With increasing distance from the toe of the forced



275

hydraulic jump in a downstream direction aldng the channel centre lihe, the
length scale increased, while the maximum velocity decayed. The stream wise
development of these scales showed some departures from those cbserved in
classical wall jets. The mean velccity profiles in the outer layers were
found to be self-similar and the similarity curve agreed reascnably well with
the corresponding curve of the classical wall jet. In the inner layers, the
velocity distributiocns were approximated by a power law and it was found
that the power varied between approximately ~%- and fﬁ . In conclusion,
it ‘can be said that the mean moticn of the forward flow in region II behaved
in a manner that was a typical cf a plane turbulent wall jet. A procedure
was developed to predict the surface profile along the channel centre line.
Finally, the forward flow of region II became separated from the bed and
impinged violently on the retaining wall. A mathematical condition for the
separation of the forward flow was developed. The maximum pressure on the

retaining wall was concentrated around the middle of the retainihg wall.

However, the pressure near the cutlet dropped considerably.

The impingement of jet on the retaining wall prcduced a continuous
disturbed periodic change in water level at the retaining wall with the
frequency remaining less than approximately 3Hz. The fluctuating water level
at the middle of the retaining wall was generally higher than that at other
locations along the retaining wall. Using the governing dimensionless para-
meters, a mathematical relationship was developed to predict the wave distri-
bution in amplitude domain at the middle of the retaining wall by a probabi-
listic approach. The ratio of the average wave height measured in respect
of the mean water level to the mean water level at the retaining wall varied
between 5.6% and 10.7. Scme variebility was observed in the magnitude and
location of the peaks in the normal power spectral density functions of the
wave height records at the retaining wall.In fact, the power spectra cbtained
vere only approximations to the true power spectra.However, while the range
of significant frequencies existing in the wave height at a given locatiocn
along the retaining wall and for given flowparameters could easilybe cbtained
from a sample spectrum, the details of‘the spectfum, beycnd the relative
variance contributions, were subject to a considerable sampling error.Incre-
asingly accurate estimates of the power spectra could be made by increasingly

large samples of data.
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F.5.2 Recommendations for Further Resezrch

There is still a need for investigation into the general problem of
a supercritical water flow deflected by a transverse wall. Suggestions for

further research which was not possible in the present investigation are

a) The generality of the results presenteé could be checked in a
similar investigation but under different géometry and scale conditions, and
extended to encompass a wider range of Froude numbers, aspect ratios and the
ratios of impingement length to impingement width. It would be especially
interesting to extend the present investigation to a short or a square
impingement where the impingement length is less or equal to the impingement

width.

b) The pressure fluctuations on the channel bed in the impinge-
ment region may cause severe loading conditions on the channel bed resulting
in damage through the mechanism of fatigue or structural resonance etc. The
stochastic character of the pressure field on the channel bed in the impinge-
ment region could alsoc be studied. It would be instructive to compare the
poviexr spectra of the fluctuating pressures with those of the wave heights

at the retaining wall.

c) The pressure on the retaining wall was of a fluctuating nature.
A -detailed study of the stochastic behaviour of the pressure field on the
retaining wall might improve its design. A spectral analysis of the various
fluctuating pressures on the retainingwall subjected to the impinging jet flow
together with an exploration of the fluctuating pressure field on the portion
of the side wall vwhich is adjacent to the retaining wall may give a further

insight into the complex behaviour of the flow in the impingement region.

d) 2&n exploration of the mean velocity characteristics in the
forward flow of region II in a transverse direction(éarallel to the retaining
wall) has still to be attempted. It would be especially interesting to check
the generality of the results obtained along the channel centre line in region

II for the section close to the channel outlet.

e) The internal structure of the flow can become clearer by mea-
surements of the guantities such as Reynolds stresses,boundary shear stresses,
turbulent intensities etc, especially in the impingement regicn. Sophis-
ticated instrumentation such as a Laser-Doppler Anemometer systen would be

required to obtain accurate and reliable measurements of these quantities.
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APPENDIX I

THE DIRAC DELTA FUNCTION

Given the function shown in Fig. I.1, which consists of a
suddenly applied excitation of constant megnitude acting for a certain
period of time which then suddenly ceases, the product of duraticn and

magnitude being unity. If e, the period of application, is small, the
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magnitude of the excitation 1/e is very great. It is sometimes convenient

to pursue this idea to the limit and imagine a forcing function of

arbitrarily large magnitude acting for an infinitesimal time, the product

of duration and intensity remaining unity as e> 0. The resulting

£(t)

V
ct

Fig. I.1 Plot suggesting the nature of a unit impulse

'funtion' is usually referred to as the unit impulse, the delta function

6(t) or Dirac delta function.

In somevhat different terms, the § function 6(t-tb) may be
described by the following definition

0, t# (a)
S§(t-t) =
(o] 0, t = tO (b) (I-l)
such that
te (c)

] § (t-t )at = 1

-C0



But while this definition is intuitively helpful, it is mathematically
meaningless. '

One interesting and important property of the Dirac function
is its ability to isoclate or reproduce a particular value of a function
f(t) (continuous at t = to) according to the following formula

4o

J £(08 (-t at = £(t) - (2.2)

—

Because of this property, it is sometimes called the spotting function
since it picks out one particular value of f(t). In a similar manner,
it is possible to define the mth derivative of a delta function, namely
s(m)(t). This can be used to select the mth derivative of a function

at a given point. This leads to a generalization of Eg. (I.2), namely
e {m) ' m_(m)
fe T e )emar = (-D7TE T () (x.3)

Using Egq. (1.3), the first moment of §'(t) is

<o
[&r)eat = -1 ' (1.4)
—-Ca
It is important to realize that é(t—to) is not a function,
rather it is a generalized function, or distribution, which maps a func-
tion into the real line. It can be handled as if it were an ordinary

function with particular interest in the values of integrals involving

S(t—to) rather than the value of 5(t—to) by itself.

The delta function has the following Fourier Transform pair

2wift

0 .
I s(ne af =1 - (a)

(£.5)

+*® .
I e—?_ulftdt — B(f)

—_c0

(b)

279



280

APPENDIX II

TEE CHI-SQUARED DISTRIBUTION

Becuase the chi-squared distribution occupies a central
position in the approximation to the distribution of smoothed estimators
-of the energy density function, an outline of this distribution is given
below.

A randem varizble x* (x* is used rather than just X to emphasize
that the statistic cannot be negative) having probability density function

given by
- _y 2
£x*) = <73 L x(v 2 g xM/2 (Ir.1)
2 T (v/2)
where T (v/2) = f e-tt(v/z)_ldt for v >0 is the Gamma function with
o]

argument v/2, is “said to be a chi-squared or x; distribution with
v degrees of freedom. The distribution is always skewed to the right

and has a mean value equal to the number of degrees of freedom i.e.

£(x?*)
A

the area under this curve is 1

p.d.f.

a/2%

P I s e s — X2

a 2
- 50'” X a/2,v

Fig. II.1 Chi-squared probability density function
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E[x*] = v (a)
U
and . _ ’ (11.2)
var[xi] = 2v : (b)
so coefficient of dispersion = V2/v

For large values of v, the distribution tends towards the
normal distribution. An example of a x; distribution is shown in
Fig. II.1. The percentage point XE,v is chosen so_that #he proportion
of the distribution, with v degrees of freedom, which lies above it,

is équal to B.
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APPERDIX IIT

THE LINEAR REGRESSIONS

It is often possible to see, by inspection of the scatter diagranm,
that & smooth curve can be fitted to the data. In particular, if a
straight line can be fitted to, n (n)2)f pairs of measurements, b&,yi) cee
ene (xn,yn), where Y; is the dependent variable and X, is the independent
- variable, then it can be said that a linear relationship exists between
the two variables and that a regression analysis will fit the best line
through the points. Regression analyses, in general, are based on the

following assumptions:
(a) There is no uncertainty in the indepednent variable x

(b) For a giVen %, the y values normally distributed with a

variance se2

(c) The variance se2 is the szme for all values of x.

Two cases are separately described here.

I11.1 The Linear Regression with Constant

The regression analysis fits a straight line of the form
¥y = bx+a to the data points, where b is the regression coefficient and
a is the regression constant. The quantities normally calculated

are summarized as follows:

(a) Means
n
x = ( z xi)/ (a)
i=1 A
(III.1)
_ n
y = (] y/n (b)
i=1
{b) Standard deviations
n
s. = [ z (x.—;)’/(n-l)]k (a)
X i=1 kR
(111.2)
T = %
s, = [izl(yi-yw(n-n] B
(c) The Pearson product-moment correlation coefficient
n _ _ n . n —
r = [_Z (x, %) (yi-,z)]/[.z (xi-x)z‘z v, -¥)?] (III.3)

i=1 i=1 i=1
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(d) The regression coefficient, b, and the i:egre_ssion constant, a

n . _ n .
b = [} {x,-2{y,v)]/ § (x-x?2 : (a)
= =1 (III.4)

y - bx , (b)

o
It
v
1
o
]

(e) The sum of squares attributable to the regression, s.s.r., the

sum of squares of deviations about the regression, s.s.d., and the total

sum of squares, s.s.t are

n
s.s.t. = 2 (yi-y)2 : » (a)
i=1 ’ |
, n A
s.s.d. = ] (y;-a-bx,)? : (b) )(III.5)
i=1
s.s.r. = s.s.t. - s.s.d. (c)

(£) The degrees of freedom attributable to the regression, d.f.r.,
the degrees of freedom of deviations about the regression, d.f.d, and the

total degrees of freedom, d.f.t., are

d.f.t. = n-1 (a)
d.f.d. = n-2 ' (b))(III.6)
d.f.r. = 1 (c)

(g) The mean square attributable to the regression, m.s.r., and the

mean sqguare of deviations about the regression, m.s.d.

(s.s.r.)/(d.f.x.) (a)b
(I11.7)

m.s.r.

s = (s.s.d)/(@.f.d) b)

m.s .d.

(h) The standard error of the regression coefficient, s.e.(b), the
standard error of the regression constant, s.e.(a), the standard error of

the predicted value for a given x, s.e.(yp), and 100 (1-a) confidence inter-

val for P
Yp‘



n

s.e.(b) = [(m.s.d.)/ ) (xi4§)’]H (a)
i=1
’ 1 22 v <) 2 L]

s.e.(a) = {(m.s.a[;+%/ ) {x,~%) i} (b}

i=1

—wr)3
see.ly) = (m.s.d.1+ 5+ XX gyl (c) ) (TI1.8)
I x-32
i=1
1 (xo_.i)z 5
uncertainty for Y, = ta/z,(n-Z){m's‘d'[l +4t H_______]} (d))
I x,-%
i=1

where £ 1s the value of the mathematical function known as Student £.

III.2 ‘The Linear Regression with no Constant

The regression analysis fits a straight line of the form y = bx

to the data points, where b is again called the regression coefficient.

'

The quantities normally calculated are summarized below

(a) Means
n
x = X xi)/n (a)
i=1
(111.9)
Y = (ly)/n (b)
i=1

(b) Standard deviations

T o Y
s, = [ 2 (xi-x)’/(n-l)] (a)
i=1
(111.10)
n
/=117 (b)
= (y,-y)?*/(n-1)
Sy [121 Y{oY ]
(c) The Pearson product-moment correlation coefficient
n _ _ n _ n _ ;2
r = [} (x;=x) (y,-¥)]/[ ) (x, -x)? _Z (y;-v)?] (III.11)
i=1 i=1 i=1
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(d) The regression coefficient, b, and the regression constant, a

n n
b = [ ] (xv)1/[ ] %] ' (III.12)
i=1 i=1 ‘ '

(e) The sum of sguares attributable to the regression, s.s.r., the
sum of squares of deviations about the regression, s.s.d, and the total

sum of squares, s.s.t.

n
= 2

s.s.t. = 'Z Y; _ (a)

i=1
. n :

s.s.d. = ) (y,-bx,)? (b) )(I1I.13)
. i T v
i=1 _ '

s.s.r. = g.s.t. - s.s5.d. (c)

(f) The degrees of freedom attributable to the regression, d.f.r.,
the degrees of freedom of deviations about the regression, d.f.d, and the

total degrees of freedom, d.f.t., are

d.f.t. = n ' {a)

Il
ja}
1
—

d.f.d. (b)) (1II.14)

It
[S

d.f.r. (c)

{(g) The mean square attributable to the regression, m.s.r., and

the mean square of deviations about the regression, m.s.d.

m.S.r. (s.s.x.)/(a.f.x.) (a)
IIT.15)

= (s.s.d.)/(d.f.d) | {b)

i
n
»

m.s.d.
e

(h) The standard error of the regression coefficient, s.e.(b)

v 4
s.e.(b) = [(m.s.d.)/ Z x,?] (II1.16)

1
1
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