369 research outputs found

    Direct correlation of crystal structure and optical properties in wurtzite/zinc-blende GaAs nanowire heterostructures

    Full text link
    A novel method for the direct correlation at the nanoscale of structural and optical properties of single GaAs nanowires is reported. Nanowires consisting of 100% wurtzite and nanowires presenting zinc-blende/wurtzite polytypism are investigated by photoluminescence spectroscopy and transmission electron microscopy. The photoluminescence of wurtzite GaAs is consistent with a band gap of 1.5 eV. In the polytypic nanowires, it is shown that the regions that are predominantly composed of either zinc-blende or wurtzite phase show photoluminescence emission close to the bulk GaAs band gap, while regions composed of a nonperiodic superlattice of wurtzite and zinc-blende phases exhibit a redshift of the photoluminescence spectra as low as 1.455 eV. The dimensions of the quantum heterostructures are correlated with the light emission, allowing us to determine the band alignment between these two crystalline phases. Our first-principles electronic structure calculations within density functional theory, employing a hybrid-exchange functional, predict band offsets and effective masses in good agreement with experimental results

    Growth study of indium-catalyzed silicon nanowires by plasma enhanced chemical vapor deposition

    Get PDF
    Indium was used as a catalyst for the synthesis of silicon nanowires in a plasma enhanced chemical vapor deposition reactor. In order to foster the catalytic activity of indium, the indium droplets had to be exposed to a hydrogen plasma prior to nanowire growth in a silane plasma. The structure of the nanowires was investigated as a function of the growth conditions by electron microscopy and Raman spectroscopy. The nanowires were found to crystallize along the , or growth direction. When growing on the and directions, they revealed a similar crystal quality and the presence of a high density of twins along the {111} planes. The high density and periodicity of these twins lead to the formation of hexagonal domains inside the cubic structure. The corresponding Raman signature was found to be a peak at 495 cm−1, in agreement with previous studies. Finally, electron energy loss spectroscopy indicates an occasional migration of indium during growt

    EuroDia: a beta-cell gene expression resource

    Get PDF
    Type 2 diabetes mellitus (T2DM) is a major disease affecting nearly 280 million people worldwide. Whilst the pathophysiological mechanisms leading to disease are poorly understood, dysfunction of the insulin-producing pancreatic beta-cells is key event for disease development. Monitoring the gene expression profiles of pancreatic beta-cells under several genetic or chemical perturbations has shed light on genes and pathways involved in T2DM. The EuroDia database has been established to build a unique collection of gene expression measurements performed on beta-cells of three organisms, namely human, mouse and rat. The Gene Expression Data Analysis Interface (GEDAI) has been developed to support this database. The quality of each dataset is assessed by a series of quality control procedures to detect putative hybridization outliers. The system integrates a web interface to several standard analysis functions from R/Bioconductor to identify differentially expressed genes and pathways. It also allows the combination of multiple experiments performed on different array platforms of the same technology. The design of this system enables each user to rapidly design a custom analysis pipeline and thus produce their own list of genes and pathways. Raw and normalized data can be downloaded for each experiment. The flexible engine of this database (GEDAI) is currently used to handle gene expression data from several laboratory-run projects dealing with different organisms and platforms

    Changes in Anxiety and Depression Traits Induced by Energy Restriction: Predictive Value of the Baseline Status

    Get PDF
    Current evidence proposes diet quality as a modifiable risk factor for mental or emotional impairments. However, additional studies are required to investigate the effect of dietary patterns and weight loss on improving psychological symptoms. The aim of this investigation was to evaluate the effect of energy-restriction, prescribed to overweight and obese participants, on anxiety and depression symptoms, as well as the potential predictive value of some baseline psychological features on weight loss. Overweight and obese participants (n = 305) were randomly assigned for 16 weeks to two hypocaloric diets with different macronutrient distribution: a moderately high-protein (MHP) diet and a low-fat (LF) diet. Anthropometrical, clinical, psychological, and lifestyle characteristics were assessed at baseline and at the end of the intervention. The nutritional intervention evidenced that weight loss has a beneficial effect on trait anxiety score in women (β = 0.24, p = 0.03), depression score in all population (β = 0.15, p = 0.02), particularly in women (β = 0.22, p = 0.03) and in subjects who followed the LF diet (β = 0.22, p = 0.04). Moreover, weight loss could be predicted by anxiety status at baseline, mainly in women and in those who were prescribed a LF diet. This trial suggests that weight loss triggers an improvement in psychological traits, and that anxiety symptoms could predict those volunteers that benefit most from a balanced calorie-restricted intervention, which will contribute to individualized precision nutrition

    Raman spectroscopy of wurtzite and zinc-blende GaAs nanowires: polarization dependence, selection rules and strain effects

    Get PDF
    Polarization dependent Raman scattering experiments realized on single GaAs nanowires with different percentages of zinc-blende and wurtzite structure are presented. The selection rules for the special case of nanowires are found and discussed. In the case of zinc-blende, the transversal optical mode E1(TO) at 267 cm-1 exhibits the highest intensity when the incident and analyzed polarization are parallel to the nanowire axis. This is a consequence of the nanowire geometry and dielectric mismatch with the environment, and in quite good agreement with the Raman selection rules. We also find a consistent splitting of 1 cm-1 of the E1(TO). The transversal optical mode related to the wurtzite structure, E2H, is measured between 254 and 256 cm-1, depending on the wurtzite content. The azymutal dependence of E2H indicates that the mode is excited with the highest efficiency when the incident and analyzed polarization are perpendicular to the nanowire axis, in agreement with the selection rules. The presence of strain between wurtzite and zinc-blende is analyzed by the relative shift of the E1(TO) and E2H modes. Finally, the influence of the surface roughness in the intensity of the longitudinal optical mode on {110} facets is presented.Comment: 28 pages, 12 figures. to be published in Phys. Rev.
    corecore