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Abstract—The time-varying and complex electrochemical be-
haviour inherent to Li-ion batteries cause a great challenge
to its diagnostics and prognostics. Electrochemical impedance
spectroscopy (EIS) based mapping of the impedance datasets as a
function of frequency to equivalent electrical elements specific to
physical/chemical characteristics is vital to validate the equivalent
circuit models (ECM). Distribution of relaxation times (DRT) is
a method to convert the EIS impedance spectra as a function of
frequency to a distribution of time constants representing an RC
network in a battery ECM. Modeling the battery with detailed
consideration of EIS data is the main advantage of the DRT
technique. In this work, the whole process of modeling a large
amount of EIS data has been done automatically, selecting only
the dominant peaks present during the entire battery ageing to
increase computational efficiency. The results show that good
accuracy is achieved in monitoring the degradation of a Li-ion
cell and that the dispersion of the different fits is consistent
throughout the data set.

Keywords—Diagnostics and Prognostics, Distribution of Re-
laxation times (DRT), Electrochemical Impedance Spectroscopy
(EIS), Equivalent Circuit Models (ECM)

I. INTRODUCTION

Lithium-ion batteries are one the most appropriate type of
energy storage to achieve decarbonization goals due to their
striking specification in terms of specific power and energy,
energy efficiency, response time, etc [1]. Besides all these
exceptional advantages, Li-ion batteries suffer from capacity
fading due to ageing. To enhance the battery’s practical use and
guarantee safe operation conditions, each Li-ion battery needs
to be tailored with a Battery Management System (BMS) [2].
One of the main functions of the BMS is related to battery
diagnostics and prognostics [3]. State of Health (SoH) is an
essential parameter in battery diagnostic to show the battery’s
capability to store energy during the time due to the decremen-
tal capacity nature of the battery. Estimating the battery State
of Charge (SoC) to avoid unexpected failure of the energy
storage system is indeed one of the most critical parameters
for the battery’s safe operation. Additionally, having a deep
understanding of the battery state can open the possibility
for the battery’s second-life applications that significantly
impact battery longevity [4]. A detailed understanding of the
battery’s capacity fading mechanism/ageing facilitates the way
to achieve an advanced BMS with a longer cycle life for the
battery. One of the common approaches to battery SoC and

SoH estimation is based on the electrical Electrical Equivalent
Model (ECM). Model-based estimation methods are very
dependent on the accuracy of the model parametrization and
the algorithm to interpret the ageing data to a proper circuit
model. It means that to have an accurate estimation, it is
essential to have comprehensive data from the battery’s ageing
under different operation conditions and a proper model to fit
the data by an appropriate algorithm.

On their counterpart, using an ECM requires deciding what
form the circuit will take. This can introduce ambiguity as
different ECM network configurations may have the same
frequency response [5]. The error induced by a wrong ECM
selection increases when analyzing an ageing data set, as
the ageing processes modify the apparent Electrochemical
Impedance Spectroscopy (EIS) shape, and the amount of data
makes it unfeasible to hand-tune the ECM circuit for each
measurement.

Classic ECM techniques required a prior deep under-
standing of the impedance behaviour to make the correct
assumptions of how the data is behaving. Recently, thanks
to the development of the Distribution of Relaxation Times
(DRT) technique, it is easier to determine the RC networks
relevant to the data set and see its evolution through the
ageing process. The idea behind DRT is to deconvolute the
measured impedance spectra to reveal the different processes
that the impedance spectra are consisting of, to support the
best model selection when the underlying processes behind the
EIS spectra are not profoundly known. The DRT technique has
been developed to analyze complex impedance spectroscopy
data, and has been used to study the dynamics of chemical
reactions in different fields like fuel cells [6], batteries, or
PEM electrolysis [7].

Using improvements in the DRT technique made by [8],
this paper proposes to include the DRT approach in the
pre-processing of the EIS data into the pipeline to data-set
analysis, automating the selection of an adequate ECM that
can represent the current EIS shape at each measurement. At
the same time, the DRT is used to select a first prediction
of the ECM parameters. An important factor in achieving
accurate results is the fitting algorithm used to fine-tune the
parameters. Finally, a global parametrization is made to have
an ECM capable of adapting to the battery’s ageing processes.



Using the DRT integration method improves the accuracy in
modeling the impedance value but comes at the cost of a
higher computation time.

From the DRT analysis performed in the data-set used in
this paper, one can extract that there are 3 main impedance
processes that have a major impact, accompanied by 2 - 3
processes with minor impact. One of the proposed models that
is considered a good approximation to model battery ageing
processes that adapt to this shape is a 2nd-order ECM with
a Warburg element, which is a good approximation to model
this data set. This is in concordance with previous literature
[9], [10].

The structure of the paper is presented as follows. In section
II, the different steps of the proposed algorithm are introduced,
from the main methodology for EIS measurements to the
DRT calculation. Subsequently, the equivalent circuit model
parameters are obtained with extraction and fitting of the ECM
parameters for degradation prediction. Section III shows the
results of applying the proposed algorithm to the selected data
set. Finally, in Section IV some conclusions on the obtained
results and as well as proposals for further steps to improve
this research are discussed.

II. METHODOLOGY

Fig. 1 presents the main principles of the methodology algo-
rithm in this paper, showing the three steps taken to process the
impedance data in the ECM model. The model is based on the
EIS measurement over a controlled ageing data set of Lithium-
Ion Battery (LIB) as illustrated in Fig. 1(a). As shown in the
visual representation of the processing algorithm, the paper’s
methodology focuses on three main stages. First, the results of
the battery ageing from the EIS measurement, second the DRT
analysis to deconvolute the EIS data during the whole battery
ageing process, and finally, effective modeling with a proper
ECM model and parametrization of the model. A similar
approach has been proposed in [11]; there, the correlation
between the battery ECM parameters as a function of Open
Circuit Voltage (OCV) has been investigated for different SoC
and temperature. The algorithm is intended to process large
amounts of data.

A. Equivalent Circuit Model (ECM)

Battery ECMs are the most well-known type of experimen-
tal model for LIBs due to their limited complexity compared
to other models. There are different approaches in selecting
an ECM that best represents the LIB system. In [12], a model
is proposed that simulates each physical layer the cell is made
of; another approach is to select an ECM that only depends on
the apparent shape of the EIS measurement, and finally, there
are the ECM models that intend to simulate the processes
in the battery that have an impedance impact. Our model
follows a mix of the two last approaches. First, with the
DRT analysis it was observed which processes were present in
our measurements, and from those results, the most relevant
processes are included in our model. Fig. 1(b) shows a sample
of the database measurements after the DRT analysis.

From the DRT analysis one can extract an ECM with three
impedance processes; in this case, it is decided to use a 2nd-
order ECM model with an additional Warburg element. This
was found to provide a good approximation to model our
data set, and is in concordance with other experiences in the
literature [9], [10]. The final ECM used in our study is given in
Fig. 1(c) and is formed of four elements. The first component,
R0, is modeling the internal ohmic resistance of the system.
Represents the value at which the impedance spectra crosses
the real impedance axis. Since in our model the inductance
behaviour of the battery (positive Zim) is omitted, the R0 value
is the impedance measured at the highest frequency point. The
second impedance component, modeled as the RseiCsei pair,
models the passivation atributed to the Solid Electrolyte Inter-
phase (SEI) crystallization of the battery. The third component,
in this model represented by the RctCct pair, models the
charge transfer processes observed in the battery. And the
last process that can be observed in the lowest frequency
measurements of the cell, the difussion processes, are modeled
as the Warburg element Wd [10].

B. Electrochemical Impedance Spectroscopy (EIS)

EIS is getting more attention to be used in Li-ion battery
diagnostics and prognostics as a non-destructive technique.
IN EIS the complex impedance of the battery is measured
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Fig. 1. Schematic overview of the steps in the proposed ECM modeling methodology. (a) Nyquist plot of an EIS measurement at different moments during
the ageing process. (b) Result of processing the EIS measurements with the DRT analysis. (c) Proposed ECM derived from the DRT analysis, with parameters
to be fitted from the EIS measurement data.
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Fig. 2. Nyquist visualization of an ideal EIS measurement. As a reference, the
colormap shows the frequency at which each impedance feature is happening,
allowing to attribute features to different processes inside the battery.

at different frequencies. The EIS measurement is based on
injecting a very small AC sweep signal within the battery
and measuring the response signal in a frequency range from
mHz to kHz to achieve the impedance spectra of the battery.
This method helps to gain better understanding of the complex
electrochemical processes that are occurring inside the battery
by analyzing the impedance spectra and interpreting the data.

Previous studies, like [13], have demonstrated that some
frequencies are more sensitive to changes in specific electro-
chemical processes governing the cell than others. Thus, by
studying the changes in those regions, it is possible to grasp
an idea of how the changes are affecting those processes.
Fig. 2 illustrates a representation of an EIS simulation of
an ideal battery, where the different processes that become
manifest in the impedance are shown, and an idea of the
frequency ranges at which these take place is visualized in
the color map. The semi-circle observed in the high-frequency
range is primarily influenced by the film’s resistance and its
accompanying capacitance. The arc in the medium-frequency
range is caused by the charge-transfer resistance and the
capacitance of the double layer. The slope at the low-frequency
end is a result of the diffusion impedance [14].

From the EIS measurement, there are two parameters that
can be extracted directly, which will be used later with the
DRT values to fit the ECM values. R0, the ohmic resistance
of the system, is extracted from the Z value at the intersection
of the Nyquist plot with the real axis at a higher frequency
and the Rpol that is inferred using a variation of the method
explained in [15]. Rpol, the polarization resistance, is the Zre

difference between the ohmic resistance of the system and
the highest resistance of the system. Usually is the second
crossing of the Zre axis; in LIBs, due to the Constant-Phase
Element (CPE) behaviour, this second crossing never occurs
and is estimated with the Zre measured at the lowest frequency
measured.

In this paper, we sequenced the data set generated by the
Cambridge university for the publication [16]. This data set
has been selected because, compared with other available EIS
repositories, data has enough resolution to extract features, up
to 10 points per decade, ageing has been done at different
temperatures, and EIS measurements have been performed at

each cycle of the battery.

C. Distribution of Relaxation Times (DRT)

This paper uses the DRT analysis developed in [8]. The
benefit of DRT analysis is that it allaws the deconvolution
of the impedance spectra into the different processes that are
present within the measurement. The EIS measurement is fitted
against the DRT model

Z(ω) = R0 +

∫ 0

0

g(τ)

1 + jωτ
dτ (1)

Where R0 is the ohmic resistance of the system, the same
shown in the section II-A, and the g(τ) is a function that
represents the time relaxation of the system; showing the
relevance at each point of the time domain of the infinite sum
of parallel R-C.

The peaks of the function can be mapped to discrete RC
networks, proposed in suitable ECM. To choose the approxi-
mation that represents the best model, it is essential to know
the application for which the model is designed. In this work,
as it can be seen in Fig. 4 one has a system with an R0 and 3
RC principal components and 2 - 3 (depending on the ageing
process) less prominent peaks. For the model, a double RC
and a Warburg element are considered sufficient and a good
balance between accuracy and computational time to produce
a result.

To convert the the DRT result into an ECM, a discreet
simplification of the Eq. 1 presented before is uses. Making
it possible possible to map the DRT peaks to the ECM
components.

Z(ω) = R0 +Rpol

n∑
k=0

G(τk)

1 + jωτk
(2)

Being
∑n

k=0 G(τk) = 1, the normalized version of g(τ).
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Fig. 3. DRT analysis of an ideal EIS measurement (solid line) giving the g(τ)
values. The arrows mark the point where the main impedance characteristics
are located and the circuit above each peak is derived from the DRT shape.
The exact shape of the ECM circuit will vary depending on the studied sample;
for LIB, it is common to model each impedance element using R-C or R-CPE
pairs respectively.



Even though one of the benefits introduced by the DRT
is giving a model-free characterization of impedance spectra
this information should be analyzed due to the fact that the
data obtained is sensitive to the EIS quality and the tune of
some DRT parameters [17]. The DRT analysis deconvolute the
impedance data and re-interprets it into g(τ) values, giving a
better understanding of how relevant is every RC-element on
the ECM.

In the data presented in this paper, after the DRT analysis
there is a shape with three main peaks, as it is represented in
the Fig. 3. Those peaks can be correlated to the processes
experienced by the battery that was visualized before in
Fig. 2 and simplifying the ECM selection. At the same time,
discretizing the impedance spectra make it simpler to study
the changes produced by the ageing at each relevant process.

In some papers like [11], [18] after performing the DRT
analysis an RC value is mapped at every peak. This gives a
great accuracy, but applying this technique to a whole data
set introduces problems. False peaks may occur, as stated in
[17], making the model inconsistent through the ageing and
difficulties within the task of tracking their differences. At the
same time, choosing proper ECM needs an assumption of how
the system behaves. The proposed method to convert the DRT
values into an ECM requires taking into account the more
prominent peaks that are present in all of the data sets.

Finally, a fine adjustment to the values pre-calculated with
the DRT method is done. This is to minimize the inaccuracies
introduced by the Rpol estimation and to correct the curve for
the omitted features. As stated in [19], the data is fitted with
the Least Squares Fit (LQF) algorithm.

III. RESULTS

Ageing of the battery and its contribution to the model fea-
tures of the cell has been visualized in Fig. 4. The distribution
of the relaxation time shows that two time constants related
to the RC processes drift through the battery’s ageing. First
time-constant related to the RC behaviour remains almost fixed
through the whole ageing of the battery. There are other 2
RC characteristics present in the data, close to τ values of
10−3 and 100, that their g value remains relatively constant
through the ageing process, but their prominence is minor.
For our application, a conscious decision has been made to
omit features from our ECM, which are minimal contributors
to increasing the accuracy while decreasing the computational
efficiency.

To assure that model tracks the same features through the
ageing, the g values are passed through an algorithm that tracks
the selected points across the ageing.

Once the dominant peak points are selected, the g(τ) values
are converted to the RC network. In Fig. 5 a Nyquist plot of
one of the EIS measurements of the data set has been shown.
The estimation is directly extracted from the DRT values and
the better approximation is deduced with the LQF algorithm.
One of the problems of the LQF is the initial values given to
the algorithm, as the accuracy of them influences the accuracy

10−5 10−4 10−3 10−2 10−1 100 101 102

0

0.5

1

1.5

τ [s]

g
(τ
)[
Ω
]

1
35
70
105
140
175
210
245
280
315
350

Fig. 4. Distribution of relaxation times at different cycle numbers of the
Li-ion cell. Each point in the figure marks the maximum of the selected
impedance features, relevant for the fitting algorithm.
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Fig. 5. Nyquist plot of cell 1 at 25 ºC on cycle 120. Comparison between
the measured impedance data (blue dots) and ECM model prediction, with
the parameters directly extracted from the DRT (green dashed line) and after
LQF adjustment (yellow line).

of the final fit. The DRT approach optimizes this step, feeding
the algorithm with a good first approximation.

The residuals of the impedance have been visualized for
the proposed modeling technique in Fig. 6 and, one can
inhere the residuals of the whole processes data, by calculating
Zcalc(ω) − Zmeas(ω)/Zmeas(ω). The error at each frequency point
is consistent through the ageing process, thus dependent on
the ECM chosen. At the same time, the accuracy through the
studied frequency falls inside the accuracy predicted through
the DRT to selected ECM. Table I shows the fit values of the
different ECM components of Fig. 1(c) for the selected cycles
of Fig. 4.

Compared to the process explained in this paper with a more
traditional approach, we can see the average error residuals
displayed in Fig. 6(a) and Fig. 6(b). Both graphs represent
the same data; in the upper sub-figure, the data has been
processed using the results of the DRT analysis to feed the
fitting algorithm with a good first guess of the values. The
second sub-figure represents the same section of the data-set
but without using the values of the DRT analysis. Comparing
both results, in lower frequencies, they have similar fitting
accuracy, but over the boundary of 1Hz the results given by
the process that includes the DRT have less dispersion in the
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Fig. 6. Fit residual values of the real and imaginary parts of the impedance as a function of frequency. The boxes represent the values within the first and
third quartile of all the measurements taken at that frequency point, whereas the dark blue bar represents the median of the data. (a) gives the result after
applying the DRT approach explained in this paper, whereas (b) is the result after the same fitting process but with omitting the DRT approach.

TABLE I
VALUES OF THE ECM PARAMETERS FITTED WITH THE DRT METHOD AS

A FUNCTION OF AGEING (CELL CYCLING).

Cycle Nr R0 Rsei Csei Rct Cct Wd Wd

[Ω] [Ω] [mF ] [Ω] [mF ] [Ω] [s]

1 0.463 0.297 1.83 0.519 30.0 0.821 27.28

35 0.426 0.280 1.94 0.513 28.7 1.89 148.2

70 0.433 0.284 2.09 0.546 30.0 1.89 142.3

105 0.446 0.289 2.23 0.581 30.6 1.97 147.3

140 0.450 0.290 2.18 0.599 30.2 0.798 18.15

175 0.462 0.282 2.19 0.605 30.4 0.834 19.00

210 0.500 0.286 2.34 0.692 35.7 0.907 19.80

245 0.520 0.289 2.77 0.818 22.9 1.05 20.23

280 0.533 0.298 2.98 0.897 46.3 1.12 19.24

315 0.600 0.289 3.07 0.969 49.3 1.27 22.34

350 0.598 0.296 3.27 1.06 52.4 1.24 18.53

results, as their Inter-Quartile Range (IQR) is smaller. And, in
a small order of magnitude, the average error presented in the
DRT approach is more minor than not using this computation.

This difference is caused by the high sensitivity that the
LQF algorithm has to the initial values to produce a better
result. When processing a reduced amount of data is feasible
to hand pick good starting values for all the measurements,

but when dealing with a large amount of data an algorithm
that can extract these initial values is necessary.

Without entering into the chemical reactions occurring in
the cell, different degradation processes that affect the battery
can be grouped into two main groups, the processes that
end up reducing the maximum capacity of the battery and
the processes that increase the impedance of the battery. The
DRT method proposed in this paper is intended to analyze the
impedance degradation processes. In Fig. 7, the ageing process
of the Zct and the change in their capacitance and resistance
can be observed. The data shown correspond to 7 batteries in
the data set aged at different temperatures, marked by the first
number in their name (25º,35º,45º).

From the data present in the data set, it can be extrapolated
that the ageing process in the charge Transfer part of the
battery is influenced by the temperature only on the resistivity
part.

In the sub Fig. 7(a), the slope at which the resistance in-
crease is highly influenced by the temperature; having clearly
delimited the different temperatures present in the data set.

From the data present sub Fig. 7(b), the rate at which the
capacity is degraded does not appear to be influenced by the
temperature difference among the cells. They appear to have
a similar degradation rate, with small variations that could be
explained by the initial differences of the cells.

The data set used for this analysis had a high disparity
between the cells at their beginning of life, with some cells
having worse impedance characteristics at the start of the test
than others at the end. To compensate this disparity and show



only the change produced by the ageing on the test the graphs
in Fig. 7 had been normalized to the value of their beginning of
life; showing the relative ageing from their starting conditions.
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Fig. 7. Charge transfer impedance drift, divided into resistance (a) and
capacitance (b). It can be seen that the resistance component Rct correlates
with temperature, whereas the capacitance Cct increase is very similar for
different temperatures.

IV. CONCLUSION

In this paper, an automated DRT analysis approach has
been developed aiming to facilitate the ECM modeling process
of an ageing lithium-ion battery for a large amount of EIS
data. ECM modeling of a battery is a powerful approach to
interprete data from EIS measurements, where the different
model elements in the ECM describe the various physical and
chemical processes occurring within the battery. It appears that
the EIS information is rich enough to discern the different
elements of the cell performance modeled by the main ECM
elements and that the DRT analysis approach helps to increase
the accuracy of the modeling. The result achieved with the new
approach has been compared to a modeling approach without
applying the DRT step.

DRT calculation is an ill-posed problem, and due to the
heavy computing power it requires, it is necessary to do some
pre-processing of the data. The first step is to prepare the data
in the standard EIS format and select the proper frequency
range with the most valuable information regarding the battery
electrochemical process. Subsequently, the data are converted
from the frequency domain into a distribution of time constants
and interpreted into g(τ), in order to parameterize the ECM
elements.

After applying the proposed analysis technique, it has been
found that this approach can also reduce the amount of lost
information from the EIS measurement, calculating the ECM
parameters more consistently and thus decreasing the IQR
bands of the errors.

Especially when the model is not approximating the real
situation well, fitting algorithms are sensitive to their starting
value to find the suitable minima of the function to parame-
terize. This is caused by a flaw of the impedance simulation
through ECM, that different combination of component values
may produce the same impedance frequency behaviour. The
DRT analysis isolates the different impedance processes that
occur in the battery, allowing one to choose the ECM values
linked only to one of these processes. This opens the possibil-
ity to study the change of the battery characteristics by tracing
the changes of each parameter of the ECM.

After having a good fit of the parameters, it is possible
to analyze the changes produced by the ageing on the fitted
parameters. As shown in the results, this ageing data set has a
high correlation between the resistance of the charge transfer
processes with the temperature at which the battery cell is
operating. In our future work, we will use the DRT approach
for ECM parametrization presented in this paper for further
evaluation of the ageing behaviour of a series of LIB cells
under different conditions.
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