56 research outputs found

    Internet of Things for Sustainable Forestry

    Get PDF
    Forests and grasslands play an important role in water and air purification, prevention of the soil erosion, and in provision of habitat to wildlife. Internet of Things has a tremendous potential to play a vital role in the forest ecosystem management and stability. The conservation of species and habitats, timber production, prevention of forest soil degradation, forest fire prediction, mitigation, and control can be attained through forest management using Internet of Things. The use and adoption of IoT in forest ecosystem management is challenging due to many factors. Vast geographical areas and limited resources in terms of budget and equipment are some of the limiting factors. In digital forestry, IoT deployment offers effective operations, control, and forecasts for soil erosion, fires, and undesirable depositions. In this chapter, IoT sensing and communication applications are presented for digital forestry systems. Different IoT systems for digital forest monitoring applications are also discussed

    TDRD3, a novel Tudor domain-containing protein, localizes to cytoplasmic stress granules

    Get PDF
    Our previous work has demonstrated that the Tudor domain of the ‘survival of motor neuron’ protein and the Tudor domain-containing protein 3 (TDRD3) are highly similar and that they both have the ability to interact with arginine-methylated polypeptides. TDRD3 has been identified among genes whose overexpression has a strong predictive value for poor prognosis of estrogen receptor-negative breast cancers, although its precise function remains unknown. TDRD3 is a modular protein, and in addition to its Tudor domain, it harbors a putative nucleic acid recognition motif and a ubiquitin-associated domain. We report here that TDRD3 localizes predominantly to the cytoplasm, where it co-sediments with the fragile X mental retardation protein on actively translating polyribosomes. We also demonstrate that TDRD3 accumulates into stress granules (SGs) in response to various cellular stresses. Strikingly, the Tudor domain of TDRD3 was found to be both required and sufficient for its recruitment to SGs, and the methyl-binding surface in the Tudor domain is important for this process. Pull down experiments identified five novel TDRD3 interacting partners, most of which are potentially methylated RNA-binding proteins. Our findings revealed that two of these proteins, SERPINE1 mRNA-binding protein 1 and DEAD/H box-3 (a gene often deleted in Sertoli-cell-only syndrome), are also novel constituents of cytoplasmic SGs. Taken together, we report the first characterization of TDRD3 and its functional interaction with at least two proteins implicated in human genetic diseases and present evidence supporting a role for arginine methylation in the regulation of SG dynamics

    Effectiveness of Protected Areas in Maintaining Plant Production

    Get PDF
    Given the central importance of protected area systems in local, regional and global conservation strategies, it is vital that there is a good understanding of their effectiveness in maintaining ecological functioning. Here, we provide, to our knowledge, the first such global analysis, focusing on plant production, a “supporting” ecosystem function necessary for multiple other ecosystem services. We use data on the normalized difference vegetation index (NDVI) as a measure of variation in plant production in the core, boundary and surroundings of more than 1000 large protected areas over a 25 year period. Forested protected areas were higher (or similar), and those non-forested were lower (or similar), in NDVI than their surrounding areas, and these differences have been sustained. The differences from surrounding areas have increased for evergreen broadleaf forests and barren grounds, decreased for grasslands, and remained similar for deciduous forests, woodlands, and shrublands, reflecting different pressures on those surroundings. These results are consistent with protected areas being effective both in the representation and maintenance of plant production. However, widespread overall increases in NDVI during the study period suggest that plant production within the core of non-forested protected areas has become higher than it was in the surroundings of those areas in 1982, highlighting that whilst the distinctiveness of protected areas from their surroundings has persisted the nature of that difference has changed

    The Influence of Recent Climate Change on Tree Height Growth Differs with Species and Spatial Environment

    Get PDF
    Tree growth has been reported to increase in response to recent global climate change in controlled and semi-controlled experiments, but few studies have reported response of tree growth to increased temperature and atmospheric carbon dioxide (CO2) concentration in natural environments. This study addresses how recent global climate change has affected height growth of trembling aspen (Populus tremuloides Michx) and black spruce (Picea mariana Mill B.S.) in their natural environments. We sampled 145 stands dominated by aspen and 82 dominated by spruce over the entire range of their distributions in British Columbia, Canada. These stands were established naturally after fire between the 19th and 20th centuries. Height growth was quantified as total heights of sampled dominant and co-dominant trees at breast-height age of 50 years. We assessed the relationships between 50-year height growth and environmental factors at both spatial and temporal scales. We also tested whether the tree growth associated with global climate change differed with spatial environment (latitude, longitude and elevation). As expected, height growth of both species was positively related to temperature variables at the regional scale and with soil moisture and nutrient availability at the local scale. While height growth of trembling aspen was not significantly related to any of the temporal variables we examined, that of black spruce increased significantly with stand establishment date, the anomaly of the average maximum summer temperature between May-August, and atmospheric CO2 concentration, but not with the Palmer Drought Severity Index. Furthermore, the increase of spruce height growth associated with recent climate change was higher in the western than in eastern part of British Columbia. This study demonstrates that the response of height growth to recent climate change, i.e., increasing temperature and atmospheric CO2 concentration, did not only differ with tree species, but also their growing spatial environment

    Ecosystem Services from Small Forest Patches in Agricultural Landscapes

    Full text link

    Climate change impacts and adaptation in forest management: a review

    Get PDF
    corecore