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of Global Land Degradation Hotspots
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Abstract Land degradation affects negatively the livelihoods and food security of
global population. There have been recurring efforts by the international community
to identify the global extent and severity of land degradation. Using the long-term
trend of biomass productivity as a proxy of land degradation at global scale, we
identify the degradation hotspots in the world across major land cover types. We
correct factors confounding the relationship between the remotely sensed vegetation
index and land-based biomass productivity, including the effects of inter-annual
rainfall variation, atmospheric fertilization and intensive use of chemical fertilizers.
Our findings show that land degradation hotpots cover about 29 % of global land
area and are happening in all agro-ecologies and land cover types. This figure does
not include all areas of degraded lands, it refers to areas where land degradation is
most acute and requires priority actions in both in-depth research and management
measures to combat land degradation. About 3.2 billion people reside in these
degrading areas. However, the number of people affected by land degradation is
likely to be higher as more people depend on the continuous flow of ecosystem
goods and services from these affected areas. Land improvement has occurred in
about 2.7 % of global land area during the last three decades, suggesting that with
appropriate actions land degradation trend could be reversed. We also identify
concrete aspects in which these results should be interpreted with cautions, the
limitations of this work and the key areas for future research.
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Introduction

Land degradation is a global problem affecting at least a quarter of the global land
area (Lal et al. 2012) and seriously undermining the livelihoods, especially of the
poor, in all agro-ecologies across the world (Nkonya et al. 2011). Although land
degradation has been critical problem throughout the history (Diamond 2005), it
has attained its current global scales, becoming a major global issue especially since
the second half of the 20th century (Nkonya et al. 2011). Since the first global
mapping of desertification in 1977 (Dregne 1977), there have been numerous efforts
at global mapping of land degradation (Oldeman et al. 1990; USDA-NRCS 1998;
Eswaran et al. 2001). The earlier generation of these studies had been constrained
by lack of global level quantitative data which could be used for mapping soil and
land degradation, and therefore were based on expert opinions. The developments
in the remote sensing and satellite technologies allowed the later studies to be based
on quantitative satellite data, such as Global Inventory Modelling and Mapping
Studies (GIMMS) dataset of 64 km2-resolution of Normalized Difference
Vegetation Index (NDVI) data, however, several methodological challenges still
exist on more accurately estimating the land degradation hotspots (Vlek et al. 2010;
Le et al. 2012).

In this context, addressing land degradation may require channeling substantial
amounts of scarce resources and making long-term investments. These investments
are likely to yield high levels of social returns and welfare improvements. However,
all countries in the world have budgetary constraints, necessitating the prioritization
of such investments. To combat land degradation, both on the international and
national levels, policy makers often need information about areas of severe
degradation in order to prioritize national budgets and plan strategic interventions
(Vlek et al. 2010; Vogt et al. 2011; Le et al. 2012). To achieve this, accurate maps
of land degradation hotspots—where land degradation is most acute, are needed.
This study seeks to meet that objective at the global level.

As indicated above, there have been several efforts in the past to map land
degradation at the global scale. The major objective of this global study is the
identification of regions where degradation magnitude and extent are relatively
high, i.e. geographic degradation hotspots, for prioritizing both preventive invest-
ments for the restoration or reclamation of degraded land, and subsequent focal
ground-based studies. Consequently, this mapping of degradation hotspots is dif-
ferent from, indeed not as contentious as, the production of an accurate map of all
degraded areas.
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Literature Review

Land degradation is a major global problem. There have been many efforts to map
land degradation at global and regional scales (Dregne 1977; Oldeman et al. 1990;
USDA-NRCS 1998; Eswaran et al. 2001; Herrmann et al. 2005; Wessels et al. 2007;
Bai et al. 2008b, 2013; Hellden and Tottrup 2008; Hill et al. 2008; Vlek et al. 2008,
2010; Le et al. 2012; Conijn et al. 2013; Dubovyk et al. 2013). However, despite these
efforts, the existing global maps of land degradation are weakened by serious
shortcomings. The earlier mapping exercises used subjective expert opinion surveys
as the basis for the maps, with unknown direction and magnitudes of measurement
errors. The more recent of these studies are making use of now globally available
remotely-sensed NDVI data (Tucker et al. 2005), but NDVI also has its own short-
comings as a proxy for land degradation, such as various confounding effects
(Pettorelli et al. 2005). These include: (1) remnant cloud-cover effects in humid
tropics, (2) soil moisture in sparse vegetative areas, which reduces the NDVI signal,
(3) seasonal variations in vegetation phenology (proportional with weather season-
ality) and time-series autocorrelation, (4) site-specific effects of vegetation structure
and site conditions (e.g. topography and altitude). These confounding effects can be
mitigated at some degree, but not completely removed. As a consequence, NDVI
trend is always affected by unexpected noise, thus bearing considerable uncertainty in
a way that where there are small magnitudes of NDVI trend, the risk that errors/noises
in the NDVI data are larger than the trend itself is much higher (Tucker et al. 2005).

Moreover, there are major factors confounding the relationship between NDVI
(NPP) trend and human-induced land degradation. These confounding effects
include: (1) the effect of inter-annual rainfall variation on NDVI (NPP) (Herrmann
et al. 2005), (2) the effect of atmospheric fertilization on vegetation greenness and
growth (Boisvenue and Running 2006; Reay et al. 2008; Lewis et al. 2009;
Buitenwerf et al. 2012; Le et al. 2012), and (3) intensive uses of chemical fertilizers in
intensified croplands (Vlek et al. 1997; Potter et al. 2010;MacDonald et al. 2011). The
biomass productivity of the land is often a low priority service in many urbanized
areas, where space provision is usually the most expected service of the land.

To isolate human-induced biomass production decline from the one driven by
rainfall, currently, there are different methods: residual trend analysis method
(ResTrend) (Evans and Geerken 2004; Herrmann et al. 2005) (Wessels et al. 2007),
the trend-correlation stepwise method (Trend-Correlation) (Le et al. 2012; Vlek
et al. 2010; Vu et al. 2014a), or trend-correlation with the additional use of rain-use
efficiency (RUE) (Bai et al. 2008a; Fensholt et al. 2013). The first two methods use
the correlation between inter-annual NDVI and rainfall data for isolating pixels with
biomass production decline not caused by rainfall inter-annual variation. If there is
no other natural drivers of biomass production decline besides the reduction of
annual rainfall, the biomass production decline in these pixels is likely caused by
human activities. The comparisons between the uses of two methods at global level
(Dent et al. 2009) and national level (Vu et al. 2014a) showed similar results. While
rain-use efficiency has been recently used in some land degradation assessments in
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dry lands (Wessels et al. 2007; Fensholt et al. 2013), there are concerns about the
use of rain-use efficiency for continental and global scale (Dent et al. 2009),
especially in the humid tropics where rainfall is generally not a limited factor of
primary productivity.

The effect of atmospheric fertilization caused by elevated levels of CO2 and NOx

in the atmosphere (Dentener 2006; Reay et al. 2008) complicates the global
assessment of land degradation using the NDVI-based approach. Increased atmo-
spheric fertilization (AF) can cause a divergence between greenness trend and soil
fertility change as the fertilization effect has not been substantially mediated
through the soil. The rising level of atmospheric CO2 stimulates photosynthesis in
plants’ leaves, thus increasing NPP, but the soil fertility may not necessarily be
proportional with the above ground biomass improvement. The wet deposition of
reactive nitrogen and other nutrients may affect positively plant growths as foliate
fertilization without significantly contributing to the soil nutrient pool, or com-
pensating nutrient losses by soil leaching and erosion. Global observations, both
field measurements (Boisvenue and Running 2006; Lewis et al. 2009; Buitenwerf
et al. 2012) and remotely sensed data analyses (Vlek et al. 2010; Fensholt et al.
2012; Le et al. 2012) show long-term improvement of biomass productivity in large
areas that cannot be attributed to either human interventions or rainfall improve-
ment. In Africa, the biomass increased at a rate of 0.63 ± 0.31 mg ha−1 year−1 over
the past 4 decades for closed-canopy tropical forest sites with ample rain and free of
human interventions (Lewis et al. 2009).

As NDVI values can be affected by several site- and land cover-specific factors
(Pinter et al. 1985; Markon et al. 1995; Thomas 1997; Mbow et al. 2013), different
locations with the same NDVI value are not necessarily have the same biomass
productivity. Thus, comparison of biomass productivity between pixels using
NDVI is a pitfall that should be avoided (Pettorelli et al. 2005). Recent studies
suggested interpreting the NDVI trend results for each spatial stratum of
social-ecological conditions in order to gain more insights about likely degradation
processes and affecting factors in the delineated hotspots (Vlek et al. 2010; Sommer
et al. 2011; Le et al. 2012; Vu et al. 2014b). Because land use/cover refers to
ecosystem exploitation (Nachtergaele and Petri 2008) and is conditioned by several
anthropogenic factors that define the social and ecological contexts for interpreting
causalities from statistical results, broad land-use classes have been recommended
for stratifying causal analyses and interpretations of land degradation (Vlek et al.
2010; Sommer et al. 2011; Vu et al. 2014b).

The Conceptual Framework

In this study, “land degradation” is understood in a broad sense. From interna-
tionally authoritative concepts of United Nations Convention to Combat
Desertification (UNCCD 2004) and Millennium Ecosystem Assessment (MEA
2005), land degradation is defined as the persistent reduction or loss of land
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ecosystem services, notably the primary production service (Safriel 2007; Vogt
et al. 2011). The aspects emphasized in this definition of land degradation include:

1. “Land” is understood as a terrestrial ecosystem that includes not only soil
resources, but also vegetation, water, other biota, landscape setting, climate
attributes, and ecological processes (MEA 2005) that operate within the system,
ensuring its functions and services.

2. The definition focuses on the ecological services of the land: land degradation
makes sense to our society only in the context of human benefits derived from
land ecosystems uses (Safriel 2007). Negative changes in soil component (e.g.
soil erosion, deteriorations of physical, chemical, and biological soil properties)
are concerned as much as how serious these changes result in reductions of
supporting (e.g. primary production), provisioning (e.g. biological products
including foods) and regulating (e.g. carbon sequestration) services of the land
(i.e. land ecosystem).

As a consequence, the definition emphasizes the pivotal role of primary pro-
duction among a wide range of land’s services. The crucial reason for this emphasis
is that primary production generates products of biological origin, on which much
of other ecosystem services depend (Safriel 2007). The primary production is the
basis of food production, regulates water, energy, and nutrient flows in land
ecosystems, sequestrates carbon dioxide from the atmosphere and generally pro-
vides habitats for diverse species (MEA 2005).

Methodology and Data

The methodological approaches applied in this study build on this previous liter-
ature and, in fact, seek to address some of the shortcomings of the previous research
on global land degradation hotspots mapping.

Proxy Indicator Approach to Mapping of Degradation
Hotspots

In the context of land degradation hotspots mapping, land degradation proxies (i.e.
key indicators that approximate relevant processes of land degradation) are often used
to delineate degradation hotspots. Although using proxies of land degradation is
always prone to considerable uncertainties, the proxy method is relevant for mapping
global, continental and national degradation hotspots due to the following reasons:

1. The main target is the areas with high magnitude and extent of degradation, i.e.
where temporal and spatial variations of the used proxies are high and
observable. This helps mitigate the adverse effects of the inherently high
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uncertainty of the used proxies (Vu et al. 2014a). The lower is the temporal and
spatial variation of the used proxies, the lower is the relevance of the proxy
method.

2. The considered scale is global, or continental or national and the related need is
to delineate degradation hotspot at coarse resolution (e.g. 1–10 km) (Vogt et al.
2011).

3. There are no other data alternatives for long-term (>2 decades), large scale
(global or continental) assessments (Vlek et al. 2010; Fensholt et al. 2012).

4. Efforts to improve global/continental land degradation assessment require the
first version of a global land degradation map to guide where and what needed
to be verified in the next steps.

Long-Term Trend of Annual NDVI as the Proxy
of Long-Term Biomass Productivity Decline

Given the global scale and long-term perspectives of the study, we used the
long-term trend of inter-annual mean Normalized Difference Vegetation Index
(NDVI) over the period 1982–2006 as a proxy for a persistent decline or
improvement in the Net Primary Productivity (NPP) of the land, thereby delineating
past land degradation hotspots. This NDVI-based assessment of land degradation
has been used by many studies (Bai et al. 2008b; Hellden and Tottrup 2008; Vlek
et al. 2010; Le et al. 2012). However, as we highlighted in the literature review,
NDVI as a proxy for land degradation has several caveats. Our strategy to address
these caveats in this NDVI-based mapping of land degradation hotspots is sum-
marized in Table 4.1.

GIMMSg-NDVI Data

The employed dataset of vegetation index Global Inventory Modeling and Mapping
Studies (GIMMS) Satellite Drift Corrected and NOAA-16 incorporated Normalized
Difference Vegetation Index (NDVI), Monthly 1981–2006, is called GIMMSg-
NDVI dataset. This dataset is available for free at the Global Land Cover Facility
(GLCF), the University of Maryland (GLCF—http://glcf.umiacs.umd.edu/data/
gimms/—accessed in 01 May 2013).

This GIMMSg-NDVI version is selected for analysis because of several reasons.
For global land degradation assessment over long terms, there may be no other
alternative data. At present the GIMMS-NDVI data archive is the only global
coverage dataset spanning 1982 to recent time. The NDVI dataset was calibrated
and corrected for view geometry, volcanic aerosols, and other effects not related to
vegetation change (Pinzon et al. 2005; Tucker et al. 2005). As a result, this new
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Table 4.1 Measures for mitigating or correcting confounding effects in the presented
NDVI-based mapping of land degradation hotspots

Confounding
factors

Affected
relationship or
process

Mitigating/correcting
measure used in this
study

Done/advised by
other studies

Remnant
cloud-cover effect
in humid tropics

NDVI versus
NPP weakened

Only non-flagged pixels
used (2)a

Tucker et al. (2005),
Brown et al. (2006)

Effect of soil
moisture in sparse
vegetative areas

NDVI versus
NPP weakened

Eliminating pixel with
NDVI < 0.05, arid zone,
cautions in sparse
vegetation areas (2)a

de Jong et al. (2012),
Fensholt et al. (2012),
Le et al. (2012)

Seasonal variations
in vegetation
phenology and
time-series
autocorrelation

Inter-annual
NDVI
(NPP) trend
confounded

Use annually average
NDVIs instead of
bi-weekly or monthly
NDVIs (1)a

Bai et al. (2008b),
Hellden and Tottrup
(2008), de Jong et al.
(2011, 2012)

Site-specific effects
of vegetation/crop
structure and site
conditions

NDVI versus
NPP weakened

No spatial trend of
NDVI used (3)a

Land-use/cover-specific
interpretation (6)a

Eliminate/cautious with
area having LAI > 4 (6)a

Pettorelli et al.
(2005), Vu et al.
(2014a), Carlson and
Ripley (1997), Vu
et al. (2014a)

Larger
errors/noises in the
NDVI data
compared to the
small NDVI trend
itself

Not reliable
Inter-annual
NDVI
(NPP) trend

Not consider pixels with
no statistical
significance or very
small magnitude of
NDVI trend (e.g.
<10 %/25 years) (3)a

Le et al. (2012), Vu
et al. (2014a)

Effect of
inter-annual rainfall
variation on NDVI
(NPP)

Mixture
between
climate-driven
and
human-induced
NPP trend

Correct partly rainfall
effect by consider
NDVI-rainfall
correlation (4)a

Herrmann et al.
(2005), Bai et al.
(2008b), Le et al.
(2012)

Effect of
atmospheric
fertilization
(AF) on NDVI
(NPP)

Mixture
between
climate-driven
and
human-induced
NPP trend

Correct partly AF effect
by consider NPP growth
in pristine areas (5)

Le et al. (2012)

Effect of intensive
fertilizer uses on
NDVI (NPP)

Mixture
between
fertilizer-driven
NPP soil-based
NPP

Masking areas with high
fertilizer use for
follow-up study (7)

Irrelevance of
considering NPP in
urbanized areas

NPP is not
relevant
indicator

Masking urban areas
from the consideration
(2)

Le et al. (2012), Vu
et al. (2014a)

aNumber within parentheses indicates the related step in Fig. 4.1
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GIMMS NDVI dataset, used in this study, is relatively consistent over time and is
of higher quality compared to the previous versions produced by the GIMMS group
(Brown et al. 2006). Using Terra MODIS NDVI as a reference (Fensholt et al.
2009) in Sahel region found that the GIMMS NDVI data set is well-suited for long

1. Temporal lagging:
Annual mean NDVI 1982-2006 

2. Masking of ineligible pixels

GIMMS NDVI 1982-2006 
(25 X 24 = 600 biweekly

global images)

3. Temporal trend of annual mean 
NDVI and statistic test

4. Correction of rainfall effect
on NDVI trend

5. Correction of atmospheric 
fertilization effect

6. Judgment of indicator’s 
suitability: Declined NPP vs main 

land-cover/use types, LAI’s
threshold

7. Adding “potential” degraded
area masked by remarkable 

fertilizer use

8. Global pattern of biomass 
productivity-based land 

degradation (map and per country 
statistics)

GIMMS flagging data,
Land use(cover (GLOBCOVER) data

Global climate data (CRU TS 3.1)  

Global land use/cover data 
(GLOBCOVER), population data 

(CIESIN-CIAT), CGIAR-CSI Global 
Aridity

GLASS Leaf Area Index data

Global fertilizer application 2000 
data (Potter et al. 2010)

Countries’ boundary (ESRI) 

Fig. 4.1 Procedure of biomass productivity-based assessment of NDVI. Note The bold text
indicates relatively new features compared to previous studies
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term vegetation studies of the Sahel–Sudanian areas. The GIMMSg-NDVI archive
“should provide a large improvement over previously used NDVI data sets, because
the data are collected by one series of instruments, and they give a more realistic
representation of the spatial and temporal variability of vegetation patterns over the
globe” (GLCF accessed in 01 May 2013).

Validity of the GIMMS dataset has been discussed in previous studies (Tucker
et al. 2005; Brown et al. 2006), and is subjected to ongoing validation (Fensholt
et al. 2012; GLCF accessed in 01 May 2013). The procedure of the analytical flow
is shown in Fig. 4.1. The detailed explanations of major analysis steps are given in
the corresponding results sections for better contextual understanding.

Results

Aggregating Annual Mean NDVI Time-Series (1982–2006)
(Step 1 in Fig. 4.1)

To minimize the confounding effects of seasonal variations and time-series auto-
correlation, we used annual average NDVI instead of the original bi-weekly
GIMMS NDVI time-series, which is similar to Hellden and Tottrup (2008) and
Vlek et al. (2010). This treatment is supported by the recent findings of de Jong
et al. (2011). They found that inconsistencies between the linear trends of annually
aggregated GIMMS NDVI and the seasonality-corrected, non-parametric trends of
the original GIMMS NDVI time-series (biweekly) were mainly on areas with weak
or non-significant NDVI trends, which are not central in our hotspot approach. The
year 1981 was excluded because it has only data for the later 6 months (July–
December). As a result, there are 25 annual mean NDVI images calculated from
600 original GIMMSg images.

Masking Ineligible Pixels (Step 2 in Fig. 4.1)

As explained in Table 4.1, pixels with the following statuses were masked from the
course of the analyses. To partly avoid the effect of cloud cover or cloud shade,
flagged GIMMS pixels, i.e. flag > 0 indicates a not good value of NDVI, were
masked. As NDVI is not a suitable indicator of NPP in bare, or very sparse veg-
etation, pixels with NDVI < 0.05 were masked. Pixels with bare surface, urban and
industrial areas, based on GLOBCOVER version 2.2 data (Bicheron et al. 2008),
were masked. Figure 4.2 depicts the resulting global pattern of the average annual
mean NDVI over 1982–2006 on the eligible (non-grey) areas.
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Significant Trend of Annual Mean NDVI Over 1982–2006
(25 Years) (Step 4 in Fig. 4.1)

Temporal Slope Metrics and Statistical Test

For each pixel i, the long-term trend of annual NPP (via vegetation index) can be
formalized by the slope coefficient (Ai) in the simple linear regression relationship

Vi ¼ Ai � tþBi ð4:1Þ

where Vi = annual mean NDVI, Ai = long-term trend of NDVI, t = year (elapsing
from 1982 to 2006), Bi = intercept (an indicator for a possible delay in the onset of
degradation). The computed slope coefficient Ai for each pixel was tested for sta-
tistical significance at different confidence levels at 90 % (p < 0.1), which is
sufficient for long-term trend analyses of noisy parameters like NDVI (Le et al.
2012; Vlek et al. 2010).

Figure 4.3 shows the significant trend in a statistical manner only. A statistically
significant trend can be with a too small magnitude that can be either not significant
in practice, or lower than errors/noises in NDVI time-series. Both cases should not
be meaningful for consideration. Thus, it is much more meaningful to look at the
relative change in inter-annual NDVI compared to the period mean (see Fig. 4.2).

Significant Biomass Productivity Decline

Significant biomass productivity (annual mean NDVI) decline is defined by the
following criteria: negative NDVI slope with a statistical significance (p < 0.1), and
Meaningful magnitude of the NDVI decline: relative NDVI annual reduction ≥
10 %/25 years (or ≥0.4 %/year) (Vlek et al. 2010; Le et al. 2012; Vu et al. 2014a).
There are two reasons for selecting this cut-off threshold.

Fig. 4.2 Average annual mean NDVI (scale factor = 1000) of the period 1982–2006
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First, from a common sense, a reduction rate of less than 0.4–0.5 % per year can
be considered to be insignificant in practice. Second, with these very small mag-
nitudes of NDVI trend, the risk that inherent errors/noises in the NDVI data are
larger than the trend itself is high, making the NDVI trend less reliable (Tucker
et al. 2005). This cut-off value helps avoid that risk.

Figure 4.4 shows spatial pattern of annual decline of biomass productivity in
percentages of the period mean of NDV (Fig. 4.4a) and in the dummy scale (i.e.
1 = significant productivity decline, 0 = otherwise) (Fig. 4.4b).

Correction of Rainfall Variation Effect

The significant decline of inter-annual NDVI shown in Fig. 4.4 can be attributed to
either temporal variation in rainfall or human activities (e.g. land cover/use con-
version and/or change in land use intensity). The annual rainfall data for the period
1982–2006, which was extracted from the TS 3.1 dataset of the Climatic Research
Unit (CRU) at the University of East Anglia (UK), were used for the isolating
purpose. The original data include grids of monthly rainfall data at a spatial reso-
lution of 0.5°, covering the 1901–2006 period (Jones and Harris 2008). To match
the spatial resolution of AVHRR‐NDVI data for later analysis, the grid cells of
rainfall data were re-sampled to match with the 8-km resolution of NDVI data,
using nearest neighbor statistics. The Trend-Correlation method is used to account
for rainfall variation effect. The procedure of Trend-Correlation method (Vlek et al.
2010) involves: For each pixel, Pearson’s correlation coefficient between
inter-annual NDVI and rainfall over the 1982–2006 period (Ri) is calculated. The
statistical significance for pixel-based correlation coefficients at a confidence level
of 95 % (p < 0.05) is tested. A pixel was considered to have a strong correlation
between its inter‐annual NDVI and rainfall if the correlation coefficient was

Fig. 4.3 Significant (p < 0.1) slope of inter-annual NDVI over 1982–2006. Notes White areas are
with either no data, or statistically non-significant trend. There has been no minimal threshold of
NDVI slope applied yet
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significant (p < 0.05) and greater than 0.5 or lower than −0.5. If the pixel has a
significantly negative NDVI trend (negative Ai, p < 0.1) and a strongly positive
vegetation–climate correlation (Ri > 0.5, p < 0.05), the NDVI decline at the location
was determined by the rainfall factor. Otherwise, the NDVI decline was likely
caused by non-climate factors. The limitation of the method is that in the pixels
with significantly negative NDVI trend and positive vegetation–rainfall correlation
(or non-significant residue trend in ResTrend method), both rainfall and human
effects can be mutually exclusive. The elimination of these pixels may also exclude
some human-induced degradation areas. The long-term response of inter-annual
NDVI to rainfall variation is shown in Fig. 4.5. Then, the NDVI decline pattern
from which rainfall-driven pixels were masked is given in Fig. 4.6.

Fig. 4.4 Significant (p < 0.1 and reduction rate ≥ 10 %/25 years) biomass productivity decline
over 1982–2006. a Annual reduction rate (% of period mean), b dummy scale (area of significant
productivity decline = 15,336,128 km2)
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Fig. 4.5 Long-term response of inter-annual NDVI to rainfall variation (1982–2006): a correlation
coefficient (Rxy) between inter-annual NDVI and rainfall, b area of rainfall-driven NDVI dynamics
(p< 0.05 andRxy≥ 0.5) thatwasmasked from further analysis (masked area in blue=10,654,464 km2)

Fig. 4.6 Significant (p < 0.1 and reduction rate ≥ 10 %/25 years) biomass production (NDVI)
decline corrected for rainfall effect (area in red = 14,525,952 km2)
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Correction of Atmospheric Fertilization Effect
(Step 5 in Fig. 4.1)

Calculate the Sub-component of AF-Driven Growth

The actual change in vegetation productivity can be considered the net balance
between the partial changes caused by human activities and those caused by natural
processes (i.e. effects of rainfall and/or AF). In pristine vegetative areas, actual
vegetation dynamics can be driven by only natural drivers as the human-induced
component of biomass dynamics can be assumed to be zero. If these areas, in
addition, have no correlation between biomass productivity and weather parame-
ters, weather effects can be neglected and the actual growth can be assumed to be
caused by atmospheric fertilization (Vlek et al. 2010). Thus, the quantum of
AF-driven growth of a particular vegetation type can be found in the pristine (no
significant human disturbance) areas of that type with no NDVI-rainfall correlation.

Based on the map in Fig. 4.6, the total land with significant biomass production
decline (p < 0.1, reduction rate ≥ 10 %/25 years) corrected for rainfall effect is
about 14.5 million km2, or about 10 % of the total global land area (i.e.
226,968 pixels, or 14,525,952 km2). We defined the above-mentioned areas by
applying an overlaying scheme as shown in Fig. 4.7.

As a result, we identified 246,159 pixels (i.e. 15,754,176 km2) belonging to 85
‘pristine’ (no significant human disturbance) Cover-Climate types that are all with
no significant NDVI-rainfall correlation (see Fig. 4.8). As explained, vegetation
biomass dynamics in these areas are likely driven by atmospheric fertilization
(AF) effect.

Non-populated area 
(extracted from CIAT-
CIESINE Population 

Density data)

Land cover types 
(18 classes extracted 
from Globcover 2005- 

2006 data )

Climate class
(5 classes based on

CGIAR-CSI Global-Aridity
data (Trabucco and Zomer 2009)) 

85 “pristine”
Cover-Climate

classes

No significant 
NDVI-rainfall
correlation

85 composite
classes where 

biomass
dynamics are 

likely AF-driven

Fig. 4.7 Overlaying scheme for defining areas of pristine (no significant human disturbance)
vegetation with no NDVI-rainfall correlation, where biomass dynamics are likely AF-driven
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The correction of AF effect was then done by three steps:

1. Calculate means of NDVI slope for each Cover-Climate-No Correlation types:
dNDVIAF,k/dt where k indexes the Cover-Climate type.

2. Re-calculation of AF-adjusted inter-annual NDVI time-series through sub-
tracting the NDVI data by quantum dNDVIAF,k/dt. This re-calculation of NDVI
time-series was specific for each Cover-Climate class k, i.e. AF-driven NDVI
accrual for each class was used for recalculation of NDVI time-series on else-
where with the same class

NDVIAF�adjusted;1983;k ¼ NDVI1982;k � 1� dNDVIAF;k=dt
NDVIAF�adjusted;1984;k ¼ NDVI1982;k � 2� dNDVIAF;k=dt
NDVIAF�adjusted;1985;k ¼ NDVI1982;k � 3� dNDVIAF;k=dt
. . .
NDVIAF�adjusted;2006;k ¼ NDVI1982;k � 24� dNDVIAF;k=dt

3. Re-calculate the trend of inter-annual AF-adjusted NDVIs, test the statistical
significance of the trend, and calculate NDVIAF-adjusted—Rainfall correlation.

The AF-corrected significant biomass productivity decline is showed in Fig. 4.9a
(in % of period-mean NDVIAF-adjusted) and Fig. 4.9b (in dummy scale). There are
633,443 pixels, i.e. 40,540,352 km2 of global land (i.e. 27 %) likely to have
experienced significant biomass productivity decline given that the effects of
rainfall and atmospheric fertilization are taken into account.

Identification of Areas with Saturated NDVI and Relation
to Land-Use/Cover Strata (Step 6 in Fig. 4.1)

The NDVI-vegetation productivity relationship can be saturated, thus biased in
areas with dense vegetation canopies (Pettorelli et al. 2005). In the areas having

Fig. 4.8 Spatial pattern of pristine vegetation with no NDVI-rainfall correlation where biomass
dynamics are likely AF-driven (area in green = 15,754,176 km2)
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dense vegetation with Leaf Area Index (LAI) more than 4, the relationship between
NDVI and the vegetation biomass tends to be saturated (i.e. NDVI is less sensitive
to actual biomass change), thus should be used with special cautions (Carlson and
Ripley 1997).

We calculated the mean annual LAI of the period 1982–2006 by using the
GLASS LAI dataset (Liang and Xiao 2012; Xiao et al. 2014). To avoid the com-
putational abundance (each year has 46 8-day LAI images), we calculated the mean
of 8-day LAI in representative years 1985, 1990, 1995 and 2000 (i.e.
n = 46 × 4 = 184 global images taken into account).

As a result, of 633,443 declined pixels in Fig. 4.9 there are 71,755 pixels (11 %)
with LAI > 4 possibly making their NDVI trend not reliable for indicating vege-
tation biomass productivity. Land degradation in these NDVI-saturated pixels
should be considered with other indicators, rather than NDVI signals. Given the
NDVI-saturated pixels masked, the area of biomass productivity decline is about
36 million km2, i.e. 24 % of global land area. These areas are shown in Fig. 4.10a
(in % of period-mean NDVIAF-adjusted) and Fig. 4.10b (in dummy scale). The
map in Fig. 4.10a shows that most of NDVI degrading areas have small annual

Fig. 4.9 Significant productivity decline with correction for both atmospheric and rainfall effects:
a relative annual rate, b dummy scale (area in red = 40,540,352 km2)
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reduction magnitude (i.e. less than 1 %/year, as showed in the area in pink). Given
the inherently high noise of NDVI signal, uncertainty of the calculated degrading
trend in these pink areas can be higher than the pixels with higher annual NDVI
reduction rate, i.e. the red to dark red pixels in Fig. 4.10a.

Relation to Land Cover Strata

At the resolution of this global study (i.e. 8-km pixel), many sub-classes of scattered
land cover/use (e.g. slash-and-burn field, mountain paddy rice terraces and fruit
plantations) will be dissimulated. Thus, we used 7 broad land use/cover classes (see
Fig. 4.11) aggregated from 23 classes of the Globcover 2005–2006 data (Bicheron
et al. 2008). The spatial pattern of long-term (1982–2006) NDVI decline with
correction of RF and AF effects and masking of saturated NDVI zone versus main
land cover/use types is shown in Fig. 4.11. The related statistics for regions in the

Fig. 4.10 Significant productivity decline with correction for rainfall and atmospheric fertilization
effects and masking of NDVI-saturated pixels. a Relative annual rate, b dummy scale (area in
red = 35,948,032 km2)
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world are summarized by major world regions in Table 4.2. Table 4.2 shows at
varying magnitudes of land degradation according to land use/cover types and
geographic regions. One of the key highlights of this summary is the substantial
shares of degradation in grasslands and shrublands, especially in North Africa and
Near East (52 %) and Sub-Saharan Africa (40 %), which negatively affects the
livelihoods of especially the pastoralist communities. In a related note, about 43 %
of the areas with sparse vegetation are degraded in Asia. Quite often, these areas
also serve as grazing grounds for ruminants, for example in Central Asia (Pender
et al. 2009). The share of cropland degradation seems especially high in Asia
(30 %), North Africa and Near East (45 %), the regions with extensive irrigated
agriculture.

These results in Fig. 4.11 and Table 4.2 should be treated with special cautions
regarding the following aspects:

1. Although pixels of saturated greenness (LAI > 4) are masked out, the indication
of biomass production dynamics using inter-annual NDVI trend in the forested
areas (data in 2005–2006) may not be reliable compared to those of herbaceous
vegetation types. The reason would be that most biomass of closed forest is in
the woody component whose annual dynamics (rather relatively slow or steady)
may not be necessary well-related to annual greenness of the forest canopy
(rather rapidly variable). Moreover, with forest ecosystems, especially those
used for nature protection, biodiversity is often a prioritized task in the
ecosystem assessments. However, increases of biomass production and/or soil
nutrients may not necessarily be correlative with biodiversity maintenance. For
example, invasion of exotic plant species can lead to high biomass productivity
but dramatically reduce biodiversity, which is not desirable regarding the
land-use purpose (Nkonya et al. 2013). Increasing of soil nutrients can reduce
plant diversity in some cases (Chapin et al. 2000; Sala et al. 2000; Wassen et al.
2005).

Fig. 4.11 Areas of long-term (1982–2006) NDVI decline (with correction of RF and AF effects
and masking saturated NDVI zone) versus main land cover/use types
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2. NDVI signal may not be a suitable indicator of degradation of sparse vegetation
areas. When wet exposed soils tend to darken, i.e. soils’ reflectance is a direct
function of water content. If the spectral response to moistening is not exactly the
same in the two spectral bands (IR and NIR), the NDVI of sparsely vegetative
areas can appear to change as a result of soil moisture changes (precipitation or
evaporation) rather than because of vegetation changes.1 Although soil-adjusted
vegetation index (SAVIs) (Huete 1988) can help improve the correlation between
the index and the actual vegetation status, vegetation biomass itself may be not so
crucial for indicating the status of the exposed soil.

3. The attribution of “human-induced” degradation to the “rainfall- and atmospheric
fertilization-corrected” NDVI decline makes sense in areas where there is no
other natural drivers of biomass production decline besides the reduction of
annual rainfall and atmospheric fertilization. Event-based wild fires which may
be a factor that has likely reduced biomass production in remote, unpopulated
regions like Alaska (Boles and Verbyla 2000) or the inland of the Australian
continent (Kasischke and Penner 2004). Thus, the term “human-induced
degradation” may be less applicable in these areas. Furthermore, the use of
mean annual NDVI can reduce partly, but not eliminate completely the effects of
change in the seasonality of weather parameters that are important in many
climate change scenarios.

Potential Soil Degradation Masked by Fertilizer Application

The trend of above ground biomass productivity can be an indirect indicator of soil
degradation or soil improvement if the nutrient source for vegetation/crop growth is
solely, or largely, from the soils (i.e. soil-based biomass productivity). In the
agricultural areas with intensive application of mineral fertilizers (i.e. fertilizer-
based crop productivity), the net primary productivity principally cannot be a
reliable indicator of soil fertility trend (Le 2012). In this case, alternative indicators
of soil fertility should be used. Global patterns of fertilizer applications, based on
data reported in around 2000 (Potter et al. 2010; MacDonald et al. 2011), are shown
in Fig. 4.12. The amount of fertilizers used in East Asia (e.g. China and Vietnam),
Northern India, Europe and in considerable areas in North America is equal to
18–20 times of those in sub-Saharan Africa (see Fig. 4.12 and Table 4.3), which has
been only around 1 kg/ha/year (Vlek et al. 1997). Although the global spatial data
of fertilizer use is available for year 2000 or around, the estimated regional averages
and trends (Table 4.4) show that the 2000 fertilizer use maps can be used to depict
the relative global patterns of the study period. Pixels with remarkable fertilizer

1http://en.wikipedia.org/wiki/Normalized_Difference_Vegetation_Index.
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application (e.g. >5.8 kg/ha/year, i.e. the global mean) and neutral biomass pro-
ductivity trend, may have a potential risk of soil degradation that cannot be detected
by NDVI-based analysis. These areas are shown in Fig. 4.13, accounting for about
7 million km2, or 4.8 % of global land area.

Fig. 4.12 Global patterns of N and P fertilizers application for major crops in 2000. Data sources
Potter et al. (2010), MacDonald et al. (2011). a Application of nitrogen fertilizer, b application of
phosphorus fertilizer, c combination of nitrogen and phosphorus application
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Areas of Soil Improvement

In addition to the areas with land degradation, we have also identified that there has
been NDVI improvement in about 2.7 % of global land area. The analysis identifies
the areas of land improvement (“bright spots”) by the increasing slope of
inter-annual mean NDVIs: more by 10 % or more over 25 years and at 90 %
statistical significance. This is also adjusted/corrected for rainfall and atmospheric
fertilization effects, LAI < 4), (Fig. 4.14).

The major “bright spots” of land improvement are located in the Sahelian belt in
Africa, Central parts of India, western and eastern coasts of Australia, central Turkey,
areas of North-Eastern Siberia in Russia, and north-western parts of Alaska in the US.

Table 4.3 Fertilizer consumptions in different regions of the world in 2011 (in million metric
tons)

Countries and regions Nitrogen Phosphorous Potash

China 33.8 11.5 5.2

India 17.4 8.0 2.6

United States 12.1 4.0 4.3

East Asia 41.7 14.1 9.5

South Asia 22.0 9.2 3.0

North America 14.4 4.8 4.6

Western and Central Europe 10.3 2.4 2.7

Latin America and the Caribbean 7.4 5.7 5.6

Eastern Europe and Central Asia 4.4 1.2 1.3

West Asia 2.9 1.1 0.3

Africa 3.3 1.0 0.5

Sub-Saharan Africa 1.7 0.6 0.4

World 108 41 28

Source International Fertilizer Association (www.ifa.org, accessed on 06 February 2014). The
figures for Sub-Saharan Africa were calculated by the authors’ based on country fertilizer con-
sumption statistics for Africa given by IFA

Table 4.4 Fertilizer uses (in million tons) and average annual growth rates (in %) in different
periods

Regions Fertilizer use Annual growth

1959/60 1989/90 2020 1960–90 1990–2020

East Asia 1.2 31.4 55.7 10.9 1.9

South Asia 0.4 14.8 33.8 12 2.8

West Asia and North Africa 0.3 6.7 11.7 10.4 1.9

Latin America 0.7 8.2 16.2 8.2 2.3

Sub-Saharan Africa 0.1 1.2 4.2 5.5 1.2

World 27.4 143.6 208 5.5 1.2

Data source FAO and the calculations by Bumb and Baanante (1996)
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Overlaying land degradation (Figs. 4.10 and 4.13) with population density
projections for 2010 (CIESIN-CIAT 2005) shows that about 3.2 billion people are
currently residing in degrading areas. Of this total number, about 0.6 billion people
live in areas where land degradation is directly observed in the remotely sensed
data, another 1.2 billion people live in areas where land degradation is likely
masked by rainfall dynamics and atmospheric fertilization effects, finally, another
1.3 billion people reside in areas where chemical fertilization may be masking soil
and land degradation. The regional breakdown of the population residing in
degrading areas is given in Table 4.5. The biggest number of people residing in
degrading areas is found in Asia, followed Europe, Middle East and North Africa,
Latin America and Caribbean, Sub-Saharan Africa and finally, North America and
Australasia. In terms of the share of people residing in degrading areas, the most

Fig. 4.13 Pixels with remarkable fertilizer application (e.g. ≥12 kg N + P/ha/year = twice of the
global mean) but with neutral trend of biomass productivity, may have a potential risk of soil
degradation

Fig. 4.14 The areas of NDVI improvement, with slope of inter-annual mean NDVIs ≥ 10 % over
25 year and 90 % statistically significant, adjusted/corrected for RF and AF effects, LAI < 4
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affected are Middle East and North Africa, and Asia. In Asia and Europe, the higher
shares of land degradation and of people residing in degrading areas are found in
areas where land degradation might be masked by chemical fertilizer application.
Whereas in other regions, visible decline and masking effects of rainfall and
atmospheric fertilization seem to dominate. One caveat, these are still somewhat
conservative estimates of the livelihoods which have potentially been affected by
land degradation, because the number of people affected by land degradation is
likely to be higher due to off-site and indirect externalities of land degradation.

Conclusions

In this study, we advance our knowledge by making the following relatively new
contributions. Firstly, the major contribution of this global study is the identification
of regions where degradation magnitude and extent are relatively high for priori-
tizing both preventive investments for the restoration or reclamation of degraded
land, and subsequent focal ground-based studies. The map of degradation hotspots
is different from the production of an accurate map of all degraded areas that seems
impractical at global level due to lacking data on many aspects of land degradation.
Secondly, we account for masking effects of rainfall dynamics, atmospheric and
anthropogenic fertilizations. To our knowledge, there has been no previous pub-
lished study at global level accounting for all these masking factors. Moreover, we
also identify the areas where land improvement has occurred.

The results show that land degradation hotspots stretch to about 29 % of the total
global land area and are occurring across all agro-ecologies. One third of this
degradation is directly identifiable from a statistically significant declining trend in
NDVI. However, the remaining two thirds of this degradation are concealed by
rainfall dynamics, atmospheric fertilization and application of chemical fertilizers.
Globally, human-induced biomass productivity decline are found in 25 % of
croplands and vegetation-crop mosaics, 29 % of mosaics of forests with shrub- and
grasslands, 25 % of shrublands, and 33 % of grasslands, as well as 23 % of areas
with sparse vegetation. The share of degrading croplands is likely to increase
further when we take into account the croplands where intensive fertilizer appli-
cation may be masking land degradation. Although this study does find land
degradation to be a massive problem in croplands, it also emphasizes, in contrast to
most previous similar studies, the extent of degradation in areas used for livestock
grazing by pastoral communities, including grasslands, shrublands, their mosaics,
and areas with sparse vegetation. In most countries, livestock production and its
value chains produce comparable economic product and incomes for rural popu-
lations as crop production. In total, there are about 3.2 billion people who reside in
these degrading areas. However, the true number of people affected by land
degradation is likely to be higher, because even those people residing outside these
degrading areas may be dependent on the continued flow of ecosystem goods and
services from the degrading areas.
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It is quite encouraging that about 2.7 % of the global land mass has experienced
significant improvement of biomass productivity over the last 25 years. However,
the improving figure is modest as being 10 times smaller than the extent of areas
with degrading lands, resulting extremely high net land degradation over the globe.
Achieving the goal of Zero Net Land Degradation (Lal et al. 2012) would, there-
fore, require considerable multiplication of efforts to rehabilitate degraded lands and
also prevent further increasing rates of land degradation.

Despite being an advancement to the past studies on global land degradation
mapping, the current work has several limitations. First, conceptually and practi-
cally the present study capture only the “primary productivity” aspect of land
degradation. The other important aspects of land degradation such as soil/water
pollution and biodiversity, which do not necessarily correlate with primary pro-
ductivity, are still out of the scope of this study. Secondly, some degraded areas
may not be captured by the NDVI-based assessment employed here, such as: the
areas facing both human-induced and climate-driven declines, and areas facing
biodiversity decline in natural vegetation. Thirdly, robustness of some key para-
metric procedures needs to be further evaluated. Moreover, the delineated degra-
dation hotspots need to be validated by ground-level studies. This ground-level
verification work is planned as the next step of our research activities. Further
research is also required for evaluating the robustness and uncertainties of the
presented results. The reported results (Figs. 4.11, 4.13 and Table 4.2) should be
used as rough guides for geographic focus/prioritization in regional/national stud-
ies. The first activity of follow-up regional/national studies is to conduct activities
for validating the “potential” hotspots. These may include the use of independent
data, e.g. finer NDVI time-series like MODIS, accurate land cover change over the
study period, soil degradation assessment (modeled erosion, leaching, change in
key soil properties) (e.g. Le et al. 2012), change in species composition (e.g. Mbow
et al. 2013), fertilizer/water uses and yields.

The drivers of land degradation are numerous, complex and interrelated (Nkonya
et al. 2011; Pender et al. 2009; Chap. 7). In most cases, the effects of different land
degradation drivers are modulated by context-specific factors (Nkonya et al. 2013),
necessitating local level in depth studies to identify the role of various factors on
land degradation and improvement. The results of global level correlative studies
comparing several factors, such as population pressure, income per capita, poverty
rates, governance (Vlek et al. 2010; Nkonya et al. 2011; Vu et al. 2014a, b) with
land degradation provide with broadly useful estimates, but remain equivocal, due
to difficulty of appropriately accounting for various omitted variables and endo-
geneity issues at such a broad scale. The results of this study are planned to be
validated at the local level, and also would serve as a basis for the in-depth analysis
of land degradation drivers through country case studies.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution
Noncommercial License, which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.
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