38 research outputs found

    Modulation of neuropeptide Y levels is impaired in crack withdrawal patients

    Get PDF
    Introduction: The dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis has a key role in drug addiction susceptibility. In addition to the well-known relationship between cortisol and the HPA axis, other molecules are involved with stress response and could modify the HPA activation, such as the neuropeptide Y (NPY), which has anxiolytic proprieties. There are few studies evaluating the effect of NPY levels on addiction, especially in crack cocaine dependence. Objective: To evaluate NPY in crack users during early withdrawal to determine its relationship with drug use and cortisol levels. Methods: We analyzed 25 male inpatient crack users. Serum NPY levels were measured at admission and discharge (mean of 24 days). Morning salivary cortisol was measured at admission. Results: Serum NPY levels at admission and discharge were very similar. Lower NPY levels at discharge were associated with higher lifetime crack use. Also, a negative correlation was found between morning cortisol and delta NPY (NPY discharge – NPY admission). Conclusion: These preliminary findings indicate that crack use influences the modulation of NPY levels and modifies stress response. The NPY pathway may play an important role in the pathophysiology of crack addiction, and the anxiolytic effect of NPY may be impaired in crack users. Future studies should consider NPY as a measurable indicator of the biological state in addiction

    CARD9<sup>+</sup> microglia promote antifungal immunity via IL-1ÎČ- and CXCL1-mediated neutrophil recruitment

    Get PDF
    This work was supported by the Intramural Research Program of the National Institute of Allergy and Infectious Disease, National Institutes of Health, as well as NIH grants awarded to TMH (R01 093808), SGF (R01AI124566) and SRL (R01CA161373). Additional funding was provided by the Burroughs Wellcome Fund (awarded to TMH), the Wellcome Trust (102705, 097377; awarded to GDB), the MRC Centre for Medical Mycology and the University of Aberdeen (MR/N006364/1; awarded to GDB). The authors additionally thank Celeste Huaman for care and screening of the Malt1 793 -/- mice.Peer reviewedPostprin

    Loss of CD4+ T cell-intrinsic arginase 1 accelerates Th1 response kinetics and reduces lung pathology during influenza infection

    Full text link
    Arginase 1 (Arg1), the enzyme catalyzing the conversion of arginine to ornithine, is a hallmark of IL-10-producing immunoregulatory M2 macrophages. However, its expression in T cells is disputed. Here, we demonstrate that induction of Arg1 expression is a key feature of lung CD4+ T cells during mouse in vivo influenza infection. Conditional ablation of Arg1 in CD4+ T cells accelerated both virus-specific T helper 1 (Th1) effector responses and its resolution, resulting in efficient viral clearance and reduced lung pathology. Using unbiased transcriptomics and metabolomics, we found that Arg1-deficiency was distinct from Arg2-deficiency and caused altered glutamine metabolism. Rebalancing this perturbed glutamine flux normalized the cellular Th1 response. CD4+ T cells from rare ARG1-deficient patients or CRISPR-Cas9-mediated ARG1-deletion in healthy donor cells phenocopied the murine cellular phenotype. Collectively, CD4+ T cell-intrinsic Arg1 functions as an unexpected rheostat regulating the kinetics of the mammalian Th1 lifecycle with implications for Th1-associated tissue pathologies

    Maternal outcomes and risk factors for COVID-19 severity among pregnant women.

    Get PDF
    Pregnant women may be at higher risk of severe complications associated with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which may lead to obstetrical complications. We performed a case control study comparing pregnant women with severe coronavirus disease 19 (cases) to pregnant women with a milder form (controls) enrolled in the COVI-Preg international registry cohort between March 24 and July 26, 2020. Risk factors for severity, obstetrical and immediate neonatal outcomes were assessed. A total of 926 pregnant women with a positive test for SARS-CoV-2 were included, among which 92 (9.9%) presented with severe COVID-19 disease. Risk factors for severe maternal outcomes were pulmonary comorbidities [aOR 4.3, 95% CI 1.9-9.5], hypertensive disorders [aOR 2.7, 95% CI 1.0-7.0] and diabetes [aOR2.2, 95% CI 1.1-4.5]. Pregnant women with severe maternal outcomes were at higher risk of caesarean section [70.7% (n = 53/75)], preterm delivery [62.7% (n = 32/51)] and newborns requiring admission to the neonatal intensive care unit [41.3% (n = 31/75)]. In this study, several risk factors for developing severe complications of SARS-CoV-2 infection among pregnant women were identified including pulmonary comorbidities, hypertensive disorders and diabetes. Obstetrical and neonatal outcomes appear to be influenced by the severity of maternal disease

    Biological Earth observation with animal sensors

    Get PDF
    Space-based tracking technology using low-cost miniature tags is now delivering data on fine-scale animal movement at near-global scale. Linked with remotely sensed environmental data, this offers a biological lens on habitat integrity and connectivity for conservation and human health; a global network of animal sentinels of environmen-tal change

    Mobilizing Animal Movement Data : API use and the Movebank platform

    No full text
    Movebank, a global platform for animal tracking and other animal-borne sensor data, is used by over 3,000 researchers globally to harmonize, archive and share nearly 3 billion animal occurrence records and more than 3 billion other animal-borne sensor measurements that document the movements and behavior of over 1,000 species. Movebank’s publicly described data model (Kranstauber et al. 2011), vocabulary and application programming interfaces (APIs) provide services for users to automate data import and retrieval. Near-live data feeds are maintained in cooperation with over 20 manufacturers of animal-borne sensors, who provide data in agreed-upon formats for accurate data import. Data acquisition by API complies with public or controlled-access sharing settings, defined within the database by data owners. The Environmental Data Automated Track Annotation System (EnvDATA, Dodge et al. 2013) allows users to link animal tracking data with hundreds of environmental parameters from remote sensing and weather reanalysis products through the Movebank website, and offers an API for advanced users to automate the submission of annotation requests. Movebank's mobile apps, the Animal Tracker and Animal Tagger, use APIs to support reporting and monitoring while in the field, as well as communication with citizen scientists. The recently-launched MoveApps platform connects with Movebank data using an API to allow users to build, execute and share repeatable workflows for data exploration and analysis through a user-friendly interface. A new API, currently under development, will allow calls to retrieve data from Movebank reduced according to criteria defined by "reduction profiles", which can greatly reduce the volume of data transferred for many use cases. In addition to making this core set of Movebank services possible, Movebank's APIs enable the development of external applications, including the widely used R programming packages 'move' (Kranstauber et al. 2012) and 'ctmm' (Calabrese et al. 2016), and user-specific workflows to efficiently execute collaborative analyses and automate tasks such as syncing with local organizational and governmental websites and archives. The APIs also support large-scale data acquisition, including for projects under development to visualize, map and analyze bird migrations led by the British Trust for Ornithology, the coordinating organisation for European bird ringing (banding) schemes (EURING), Georgetown University, National Audubon Society, Smithsonian Institution and United Nations Convention on Migratory Species. Our API development is constrained by a lack of standardization in data reporting across animal-borne sensors and a need to ensure adequate communication with data users (e.g., how to properly interpret data; expectations for use and attribution) and data owners (e.g., who is using publicly-available data and how) when allowing automated data access. As interest in data linking, harvesting, mirroring and integration grows, we recognize needs to coordinate API development across animal tracking and biodiversity databases, and to develop a shared system for unique organism identifiers. Such a system would allow linking of information about individual animals within and across repositories and publications in order to recognize data for the same individuals across platforms, retain provenance and attribution information, and ensure beneficial and biologically meaningful data use.publishe

    A Cross-Cultural View of Adults’ Perceptions of Children’s Rights

    No full text
    This study examined how the need for autonomy may be coexisting with current cultural norms. A total of 264 U.S., 76 Swiss, and 51 British adults completed two perceptions of children\u27s rights surveys. The results showed that Swiss and British participants were significantly more likely to advocate for autonomy or self-determination rights than same-aged U.S. adults. British participants were also more likely to advocate for children\u27s self-determination rights than U.S. and Swiss participants, whereas Swiss adults were more likely to grant children nurturance rights than British and US adults. Generally, parents were less likely to advocate for autonomy than non-parents. The results are discussed in terms of individualism--collectivism, self-determination theories, and parentalism

    Wind estimation based on thermal soaring of birds

    Get PDF
    The flight performance of birds is strongly affected by the dynamic state of the atmosphere at the birds' locations. Studies of flight and its impact on the movement ecology of birds must consider the wind to help us understand aerodynamics and bird flight strategies. Here, we introduce a systematic approach to evaluate wind speed and direction from the high-frequency GPS recordings from bird-borne tags during thermalling flight. Our method assumes that a fixed horizontal mean wind speed during a short (18 seconds, 19 GPS fixes) flight segment with a constant turn angle along a closed loop, characteristic of thermalling flight, will generate a fixed drift for each consequent location. We use a maximum-likelihood approach to estimate that drift and to determine the wind and airspeeds at the birds' flight locations. We also provide error estimates for these GPS-derived wind speed estimates. We validate our approach by comparing its wind estimates with the mid-resolution weather reanalysis data from ECMWF, and by examining independent wind estimates from pairs of birds in a large dataset of GPS-tagged migrating storks that were flying in close proximity. Our approach provides accurate and unbiased observations of wind speed and additional detailed information on vertical winds and uplift structure. These precise measurements are otherwise rare and hard to obtain and will broaden our understanding of atmospheric conditions, flight aerodynamics, and bird flight strategies. With an increasing number of GPS-tracked animals, we may soon be able to use birds to inform us about the atmosphere they are flying through and thus improve future ecological and environmental studies.publishe
    corecore