17 research outputs found

    Contamination of groundwater under cultivated fields in an arid environment, central Arava Valley, Israel

    Get PDF
    The purpose of this study is to obtain a better understanding of groundwater contamination processes in an arid environment (precipitation of 50 mm/year) due to cultivation. Additional aims were to study the fate of N, K, and other ions along the whole hydrological system including the soil and vadose zone, and to compare groundwater in its natural state with contaminated groundwater (through the drilling of several wells). A combination of physical, chemical, and isotopic analyses was used to describe the hydrogeological system and the recharge trends of water and salts to the aquifers. The results indicate that intensive irrigation and fertilization substantially affected the quantity and quality of groundwater recharge. Low irrigation efficiency of about 50% contributes approximately 3.5–4 million m3/year to the hydrological system, which corresponds to 0.65 m per year of recharge in the irrigated area, by far the most significant recharge mechanism. Two main contamination processes were identified, both linked to human activity: (1) salinization due to circulation of dissolved salts in the irrigation water itself, mainly chloride, sulfate, sodium and calcium, and (2) direct input of nitrate and potassium mainly from fertilizers. The nitrate concentrations in a local shallow groundwater lens range between 100 and 300 mg/l and in the upper sub-aquifer are over 50 mg/l. A major source of nitrate is fertilizer N in the excess irrigation water. The isotopic compositions of δ15N–NO3 (range of 4.9–14.8‰) imply also possible contributions from nearby sewage ponds and/or manure. Other evidence of contamination of the local groundwater lens includes high concentrations of K (20–120 mg/l) and total organic carbon (about 10 mg/l)

    Isotopic Composition of the Elements 2001

    No full text
    The Commission on Atomic Weights and Isotopic Abundances of the Intenational Union of Pure and Applied Chemistry completed its last review of the isotopic compositions of the elements as determined by isotope ratio mass spectrometry in 2001. That review involved a critical evaluation of the published literature, element by element, and from the basis of the table of isotopic compositions of the elements (TICE) presented here. For each element, TICE includes evaluated data from the ¿best measurement¿ of the isotope abundances in a single sample, along with a set of representative isotope abundances and uncertainties that accommodate known variations in normal terrestrial materials. The representative isotope abundances and uncertainties generally are consistent with the standard atomic weight of the element Ar(E) and its uncertainty U[Ar(E)] recommended by CAWIA in 2001.JRC.D.4-Isotope measurement

    Expressing Crystallographic Textures through the Orientation Distribution Function: Conversion between the Generalized Spherical Harmonic and Hyperspherical Harmonic Expansions

    No full text
    In the analysis of crystallographic texture, the orientation distribution function (ODF) of the grains is generally expressed as a linear combination of the generalized spherical harmonics. Recently, an alternative expansion of the ODF, as a linear combination of the hyperspherical harmonics, has been proposed, with the advantage that this is a function of the angles that directly describe the axis and angle of each grain rotation, rather than of the Euler angles. This article provides the formulas required to convert between the generalized spherical harmonics and the hyperspherical harmonics, and between the coefficients appearing in their respective expansions of the ODF. A short discussion of the phase conventions surrounding these expansions is also presented.National Science Foundation (U.S.) (contract DMR- 0346848)National Science Foundation (U.S.) (contract DMR-0855402
    corecore