1,216 research outputs found

    Study of refractive structure in the inelastic 16O+16O scattering at the incident energies of 250 to 1120 MeV

    Full text link
    The data of inelastic 16O+16O scattering to the lowest 2+ and 3- excited states of 16O have been measured at Elab = 250, 350, 480, 704 and 1120 MeV and analyzed consistently in the distorted wave Born approximation (DWBA), using the semi- microscopic optical potentials and inelastic form factors given by the folding model, to reveal possible refractive structure of the nuclear rainbow that was identified earlier in the elastic 16O+16O scattering channel at the same energies. Given the known transition strengths of the 2+ and 3- states of 16O well determined from the (e,e') data, the DWBA description of the inelastic data over the whole angular range was possible only if the absorption in the exit channels is significantly increased (especially, for the 16O+16O(2+) exit channel). Although the refractive pattern of the inelastic 16O+16O scattering was found to be less pronounced compared to that observed in the elastic scattering channel, a clear remnant of the main rainbow maximum could still be seen in the inelastic cross section at Elab = 350 - 704 MeV.Comment: 26 pages, 10 figures, Accepted for publication in Nucl. Phys.

    FIRST experiment: Fragmentation of Ions Relevant for Space and Therapy

    Get PDF
    Nuclear fragmentation processes are relevant in different fields of basic research and applied physics and are of particular interest for tumor therapy and for space radiation protection applications. The FIRST (Fragmentation of Ions Relevant for Space and Therapy) experiment at SIS accelerator of GSI laboratory in Darmstadt, has been designed for the measurement of different ions fragmentation cross sections at different energies between 100 and 1000 MeV/nucleon. The experiment is performed by an international collaboration made of institutions from Germany, France, Italy and Spain. The experimental apparatus is partly based on an already existing setup made of the ALADIN magnet, the MUSIC IV TPC, the LAND2 neutron detector and the TOFWALL scintillator TOF system, integrated with newly designed detectors in the interaction Region (IR) around the carbon removable target: a scintillator Start Counter, a Beam Monitor drift chamber, a silicon Vertex Detector and a Proton Tagger for detection of light fragments emitted at large angles (KENTROS). The scientific program of the FIRST experiment started on summer 2011 with the study of the 400 MeV/nucleon 12C beam fragmentation on thin (8mm) carbon targe

    Structure of 10Be from the 12C 12C,14O 10Be reaction

    Get PDF
    The 12C 12C,14O two proton pick up reaction has been measured at 211.4 MeV incident energy to study the structure of states of 10Be up to excitation energies of 12 MeV. The measured partial angular distributions show pronounced oscillatory shapes, which were described by coupled reaction channels calculations. Spin parity assignments could be derived from these characteristic shapes and two definite assignments have been made. The state at 11.8 MeV has been identified as the 4 member of the ground state band, and the state at 10.55 MeV is assigned J pi 3 . At 5.96 MeV only the 1 1 member of the known 2 2 1 1 doublet is populated. The angular distribution of the peak at 9.50 MeV, which consists of several unresolved states, has been unfolded using contributions from known states at 9.56 MeV, 2 , and 9.27 MeV, 4 . The inclusion of a state at 9.4 MeV reported by Daito it et al. from the 10B t,3He 10Be reaction and tentatively assigned 3 improved the fit considerably. A K 2 band is formed with the 2 2 state as the band head and the 3 state as the second member. The structures of the K pi 0 1, 2 2, and 1 1 bands are discusse

    Targeting atypical protein kinase C iota reduces viability in glioblastoma stem-like cells via a notch signaling mechanism

    Get PDF
    In a previous study, Protein Kinase C iota (PRKCI) emerged as an important candidate gene for glioblastoma (GBM) stem-like cell (GSC) survival. Here, we show that PKCÎą is overexpressed and activated in patient derived GSCs compared with normal neural stem cells and normal brain lysate, and that silencing of PRKCI in GSCs causes apoptosis, along with loss of clonogenicity and reduced proliferation. Notably, PRKCI silencing reduces tumor growth in vivo in a xenograft mouse model. PKCÎą has been intensively studied as a therapeutic target in non-small cell lung cancer, resulting in the identification of an inhibitor, aurothiomalate (ATM), which disrupts the PKCÎą/ERK signaling axis. However, we show that, although sensitive to pharmacological inhibition via a pseudosubstrate peptide inhibitor, GSCs are much less sensitive to ATM, suggesting that PKCÎą acts along a different signaling axis in GSCs. Gene expression profiling of PRKCI-silenced GSCs revealed a novel role of the Notch signaling pathway in PKCÎą mediated GSC survival. A proximity ligation assay showed that Notch1 and PKCÎą are in close proximity in GSCs. Targeting PKCÎą in the context of Notch signaling could be an effective way of attacking the GSC population in GBM

    Particle-unstable nuclei in the Hartree-Fock theory

    Get PDF
    Ground state energies and decay widths of particle unstable nuclei are calculated within the Hartree-Fock approximation by performing a complex scaling of the many-body Hamiltonian. Through this transformation, the wave functions of the resonant states become square integrable. The method is implemented with Skyrme effective interactions. Several Skyrme parametrizations are tested on four unstable nuclei: 10He, 12O, 26O and 28O.Comment: 5 pages, LaTeX, submitted to Phys. Rev. Let

    Three-body Faddeev Calculation for 11Li with Separable Potentials

    Get PDF
    The halo nucleus 11^{11}Li is treated as a three-body system consisting of an inert core of 9^{9}Li plus two valence neutrons. The Faddeev equations are solved using separable potentials to describe the two-body interactions, corresponding in the n-9^{9}Li subsystem to a p1/2_{1/2} resonance plus a virtual s-wave state. The experimental 11^{11}Li energy is taken as input and the 9^{9}Li transverse momentum distribution in 11^{11}Li is studied.Comment: 6 pages, RevTeX, 1 figur

    Structure of excited states of Be-11 studied with Antisymmetrized Molecular Dynamics

    Get PDF
    The structures of the ground and excited states of Be-11 were studied with a microscopic method of antisymmetrized molecular dynamics. The theoretical results reproduce the abnormal parity of the ground state and predict various kinds of excited states. We suggest a new negative-parity band with a well-developed clustering structure which reaches high-spin states. Focusing on a 2α2\alpha clustering structure, we investigated structure of the ground and excited states. We point out that molecular orbits play important roles for the intruder ground state and the low-lying 2ℏω2\hbar \omega states. The features of the breaking of α\alpha clusters were also studied with the help of data for Gamow-Teller transitions.Comment: 24 pages, 7 figures, to be submitted to Phys.Rev.

    Simple transfer functions for calculating benthic fixed nitrogen losses and C:N:P regeneration ratios in global biogeochemical models

    Get PDF
    Empirical transfer functions are derived for predicting the total benthic nitrate loss(LNO3) and the net loss of dissolved inorganic nitrogen (LDIN) in marine sediments,equivalent to sedimentary denitrification. The functions are dynamic vertically integratedsediment models which require the rain rate of particulate organic carbon to the seafloor(RRPOC) and a proposed new variable(O2-NO3)bw (bottom water O2 concentration minus NO3-concentration) as the only input parameters. Applied globally to maps of RRPOC and(O2-NO3)bw on a 1° x 1° spatial resolution, the models predict a NO3- drawdown of 196 Tg yr-1 (LNO3)of which 153 – 155 Tg yr-1 is denitrified to N2 (LDIN). This is in good agreement with previous estimates using very different methods. Our approach implicitly accounts for fixed N loss via anammox, such that our findings do not support the idea that the relatively recent discovery of anammox in marine sediments might require current estimates of the global benthic marine N budget to be revised. The continental shelf (0 – 200 m) accounts for >50% of global LNO3 and LDIN, with slope (200 – 2000 m) and deep-sea (>2000 m) sediments contributing ca. 30% and 20%, respectively. Denitrification in high-nitrate/low-oxygen regions such as oxygen minimum zones is significant (ca. 15 Tg N yr-1; 10% of global) despite covering only 1% of the seafloor. The data are used to estimate the net fluxes of nitrate (18 Tg N yr-1) and phosphate(27 Tg P yr-1) across the sediment-water interface. The benthic fluxes strongly deviate from Redfield composition, with globally averaged N:P, N:C and C:P values of 8.3, 0.067 and 122, respectively, indicating world-wide fixed N losses (by denitrification) relative to C and P. The transfer functions are designed to be coupled dynamically to general circulation models to better predict the feedback of sediments on pelagic nutrient cycling and dissolved O2 distributions

    Breakup Reactions of 11Li within a Three-Body Model

    Get PDF
    We use a three-body model to investigate breakup reactions of 11Li (n+n+9Li) on a light target. The interaction parameters are constrained by known properties of the two-body subsystems, the 11Li binding energy and fragmentation data. The remaining degrees of freedom are discussed. The projectile-target interactions are described by phenomenological optical potentials. The model predicts dependence on beam energy and target, differences between longitudinal and transverse momentum distributions and provides absolute values for all computed differential cross sections. We give an almost complete series of observables and compare with corresponding measurements. Remarkably good agreement is obtained. The relative neutron-9Li p-wave content is about 40%. A p-resonance, consistent with measurements at about 0.5 MeV of width about 0.4 MeV, seems to be necessary. The widths of the momentum distributions are insensitive to target and beam energy with a tendency to increase towards lower energies. The transverse momentum distributions are broader than the longitudinal due to the diffraction process. The absolute values of the cross sections follow the neutron-target cross sections and increase strongly for beam energies decreasing below 100 MeV/u.Comment: 19 pages, 14 figures, RevTeX, psfig.st
    • …
    corecore