117 research outputs found

    Modeling, Stability Analysis, and Testing of a Hybrid Docking Simulator

    Full text link
    A hybrid docking simulator is a hardware-in-the-loop (HIL) simulator that includes a hardware element within a numerical simulation loop. One of the goals of performing a HIL simulation at the European Proximity Operation Simulator (EPOS) is the verification and validation of the docking phase in an on-orbit servicing mission.....Comment: 30 papge

    Analytical and experimental stability investigation of a hardware-in-the-loop satellite docking simulator

    Full text link
    The European Proximity Operation Simulator (EPOS) of the DLR-German Aerospace Center is a robotics-based simulator that aims at validating and verifying a satellite docking phase. The generic concept features a robotics tracking system working in closed loop with a force/torque feedback signal. Inherent delays in the tracking system combined with typical high stiffness at contact challenge the stability of the closed-loop system. The proposed concept of operations is hybrid: the feedback signal is a superposition of a measured value and of a virtual value that can be tuned in order to guarantee a desired behavior. This paper is concerned with an analytical study of the system's closed-loop stability, and with an experimental validation of the hybrid concept of operations in one dimension (1D). The robotics simulator is modeled as a second-order loop-delay system and closed-form expressions for the critical delay and associated frequency are derived as a function of the satellites' mass and the contact dynamics stiffness and damping parameters. A numerical illustration sheds light on the impact of the parameters on the stability regions. A first-order Pade approximation provides additional means of stability investigation. Experiments were performed and tests results are described for varying values of the mass and the damping coefficients. The empirical determination of instability is based on the coefficient of restitution and on the observed energy. There is a very good agreement between the critical damping values predicted by the analysis and observed during the tests...Comment: 16 page

    Interpreting Attoclock Measurements of Tunnelling Times

    Full text link
    Resolving in time the dynamics of light absorption by atoms and molecules, and the electronic rearrangement this induces, is among the most challenging goals of attosecond spectroscopy. The attoclock is an elegant approach to this problem, which encodes ionization times in the strong-field regime. However, the accurate reconstruction of these times from experimental data presents a formidable theoretical challenge. Here, we solve this problem by combining analytical theory with ab-initio numerical simulations. We apply our theory to numerical attoclock experiments on the hydrogen atom to extract ionization time delays and analyse their nature. Strong field ionization is often viewed as optical tunnelling through the barrier created by the field and the core potential. We show that, in the hydrogen atom, optical tunnelling is instantaneous. By calibrating the attoclock using the hydrogen atom, our method opens the way to identify possible delays associated with multielectron dynamics during strong-field ionization.Comment: 33 pages, 10 figures, 3 appendixe

    A Natural Love of Natural Products

    Get PDF
    Recent research on the chemistry of natural products from the author’s group that led to the receipt of the ACS Ernest Guenther Award in the Chemistry of Natural Products is reviewed. REDOR NMR and synthetic studies established the T-taxol conformation as the bioactive tubulin-binding conformation, and these results were confirmed by the synthesis of compounds which clearly owed their activity or lack of activity to whether or not they could adopt the T-taxol conformation. Similar studies with the epothilones suggest that the current tubulin-binding model needs to be modified. Examples of natural products discovery and biodiversity conservation in Suriname and Madagascar are also presented, and it is concluded that natural products chemistry will continue to make significant contributions to drug discovery. My first real exposure to natural products chemistry came in my third and final year as an undergraduate at Cambridge University, when I attended a course of lectures on the chemistry of natural products by the Nobel Prize-winning chemist Sir Alexander Todd (later to become Lord Todd). The lectures included many references to his own work in the field, with stories of his early work on the structure of cholesterol, th

    HIV-1 assembly in macrophages

    Get PDF
    The molecular mechanisms involved in the assembly of newly synthesized Human Immunodeficiency Virus (HIV) particles are poorly understood. Most of the work on HIV-1 assembly has been performed in T cells in which viral particle budding and assembly take place at the plasma membrane. In contrast, few studies have been performed on macrophages, the other major target of HIV-1. Infected macrophages represent a viral reservoir and probably play a key role in HIV-1 physiopathology. Indeed macrophages retain infectious particles for long periods of time, keeping them protected from anti-viral immune response or drug treatments. Here, we present an overview of what is known about HIV-1 assembly in macrophages as compared to T lymphocytes or cell lines

    Rab7A Is Required for Efficient Production of Infectious HIV-1

    Get PDF
    Retroviruses take advantage of cellular trafficking machineries to assemble and release new infectious particles. Rab proteins regulate specific steps in intracellular membrane trafficking by recruiting tethering, docking and fusion factors, as well as the actin- and microtubule-based motor proteins that facilitate vesicle traffic. Using virological tests and RNA interference targeting Rab proteins, we demonstrate that the late endosome-associated Rab7A is required for HIV-1 propagation. Analysis of the late steps of the HIV infection cycle shows that Rab7A regulates Env processing, the incorporation of mature Env glycoproteins into viral particles and HIV-1 infectivity. We also show that siRNA-mediated Rab7A depletion induces a BST2/Tetherin phenotype on HIV-1 release. BST2/Tetherin is a restriction factor that impedes HIV-1 release by tethering mature virus particles to the plasma membrane. Our results suggest that Rab7A contributes to the mechanism by which Vpu counteracts the restriction factor BST2/Tetherin and rescues HIV-1 release. Altogether, our results highlight new roles for a major regulator of the late endocytic pathway, Rab7A, in the late stages of the HIV-1 replication cycle

    Mechanisms of seawater acclimation in a primitive, anadromous fish, the green sturgeon

    Get PDF
    Relatively little is known about salinity acclimation in the primitive groups of fishes. To test whether physiological preparative changes occur and to investigate the mechanisms of salinity acclimation, anadromous green sturgeon, Acipenser medirostris (Chondrostei) of three different ages (100, 170, and 533 dph) were acclimated for 7 weeks to three different salinities (<3, 10, and 33 ppt). Gill, kidney, pyloric caeca, and spiral intestine tissues were assayed for Na+, K+-ATPase activity; and gills were analyzed for mitochondria-rich cell (MRC) size, abundance, localization and Na+, K+-ATPase content. Kidneys were analyzed for Na+, K+-ATPase localization and the gastro-intestinal tract (GIT) was assessed for changes in ion and base content. Na+, K+-ATPase activities increased in the gills and decreased in the kidneys with increasing salinity. Gill MRCs increased in size and decreased in relative abundance with fish size/age. Gill MRC Na+, K+-ATPase content (e.g., ion-pumping capacity) was proportional to MRC size, indicating greater abilities to regulate ions with size/age. Developmental/ontogenetic changes were seen in the rapid increases in gill MRC size and lamellar length between 100 and 170 dph. Na+, K+-ATPase activities increased fourfold in the pyloric caeca in 33 ppt, presumably due to increased salt and water absorption as indicated by GIT fluids, solids, and ion concentrations. In contrast to teleosts, a greater proportion of base (HCO3− and 2CO32−) was found in intestinal precipitates than fluids. Green sturgeon osmo- and ionoregulate with similar mechanisms to more-derived teleosts, indicating the importance of these mechanisms during the evolution of fishes, although salinity acclimation may be more dependent on body size

    An Unusual Cause of Pelvic Hemorrhage: Multidetector Ct Diagnosis of Inferior Mesenteric Vein Injury

    Get PDF
    Pelvic trauma can lead to uncontrollable bleeding and even death. Although significantly decreased with the application of novel treament modalities and the use of state-of-the-art imaging equipment, pelvic trauma and subsequent bleeding remains to stay as a major source of morbidity and mortality. In this case we present a patient suffering from pelvic bleeding from the inferior mesenteric vein due to sigmoid mesocolon injury. Similar finding has not been reported as an isolated source of pelvic hemorrhage. We also propose that the routine use of reformatted images obtained with multidetector CT scanners in patients with hemoperitoneum may be a highly useful adjunct for the correct identification of the source of hemorrhage.WoSScopu
    corecore