
Derivations of the Born Rule

Lev Vaidman

Abstract The Born rule, a cornerstone of quantum theory usually taken as a pos-
tulate, continues to attract numerous attempts for its derivation. A critical review
of these derivations, from early attempts to very recent results, is presented. It is
argued that the Born rule cannot be derived from the other postulates of quantum
theory without some additional assumptions.

1 Introduction

My attempt to derive the Born rule appeared in the first memorial book for Itamar
Pitowsky [Vaidman, 2012]. I can only guess Itamar’s view on my derivation from
reading his papers [Pitowsky, 1989, Pitowsky, 2003, Pitowsky, 2006, Hemmo and Pitowsky, 2007].
It seems that we agree which quantum features are important, although our conclu-
sions might be different. In this paper I provide an overview of various derivations
of the Born rule. In numerous papers on the subject I find in depth analyses of par-
ticular approaches and here I try to consider a wider context that should clarify the
status of the derivation of the Born rule in quantum theory. I hope that it will trig-
ger more general analyses which finally will lead to a consensus needed for putting
foundations of quantum theory on solid ground.

The Born rule was born at the birth of quantum mechanics. It plays a crucial
role in explaining experimental results which could not be explained by classical
physics. The Born rule is known as a statement about the probability of an out-
come of a quantum measurement. This is an operational meaning which corresponds
to numerous very different statements about ontology in various interpretations of
quantum theory. Von Neumann’s description of quantum measurement includes, at
some stage, a collapse of the quantum state corresponding to a particular result of
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2 Lev Vaidman

the measurement and the Born rule provides the probability of getting this result.
In this framework there is no definition of when exactly it happens (where is the
quantum-classical boundary?), so the Copenhagen interpretation and its recent de-
velopment in the form of Qbism [Caves et al., 2002] do not specify the ontology,
leaving the definition of the principle on the operational level. The Born rule is a
postulate about the initial distribution of the Bohmian positions of particles in the
framework of the Bohmian interpretation [Bohm, 1952] which is a deterministic
theory. It is a postulate about the genuinely random stochastic collapse process in
the framework of physical collapse theories [Ghirardi et al., 1986]. In Aharonov’s
solution to the measurement problem [Aharonov et al., 2014] it is a postulate about
the particular form of the backward evolving wavefunciton. In the framework of the
many-worlds interpretation (MWI) it is a postulate about the experiences of an ob-
server in a particular world [Vaidman, 2018]. So, in all interpretations, the Born rule
is postulated, but the question of the possibility of its derivation is considered to be
of interest and it is still open [Landsman, 2009].

A rarely emphasized important fact about the Born rule is that it might be even
more relevant for explaining physics phenomena in which the probability is not ex-
plicitly manifested. Quantum statistical mechanics which leads to quantum thermo-
dynamics heavily uses the Born rule for explaining everyday observed phenomena.
There is nothing random when we observe a blue sky or reddish sun at sunset. The
explanation includes scattered photons of various colors absorbed by cones in the
eye with their color depended efficiency of the absorption. The ratio of the number
of events of photon absorption in different cones corresponds to different experi-
ences of the color of the sky and the sun and we have to use the Born rule to explain
our visual experience [Li et al., 2014]. In this explanation we consider the cone pho-
toreceptor in an eye as a single photon detector and light from the sun scattered by
molecules of air as a collection of photons. The quantum nature of light coming
from modern artificial light sources is even more obvious. An observer looks on a
short flash of a fluorescent soft white bulb and announces the color she has seen.
The spectrum of the light from this bulb consists of red, green and blue photons,
but nobody would say that she saw red light or that she saw green light from the
fluorescent bulb. The Born Rule is needed to calculate the ratio of the signals from
the cones. The large number of events of photon detection by cones explains why
nobody would say they saw a color different from white, since the Born rule pro-
vides an almost vanishing probability for such event. The Born rule also tells us that
there is an astronomically small probability that we will see a red sky and a blue
sun, but it is not different from other quantum tiny tails which we neglect when we
explain the classical world we observe through underlying quantum reality.

2 Frequentist approach

One of the earliest approaches relied on consideration of infinite series of repeated
measurements. In the frequentist approach to probability, we consider the ratio of
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particular outcomes to the total number of measurements and the basic claim is
that the probability has meaning only in the infinite limit. The important mile-
stones were the works of Hartle [Hartle, 1968] and Farhi, Goldstein and Gutmann
[Farhi et al., 1989]. Then the program was extended by replacing infinite tensor
products of Hilbert spaces by continuous fields of C?-algebras [Van Wesep, 2006,
Landsman, 2008]. The core feature of these arguments involves taking a limit of an
infinite number of quantum systems. Aharonov and his collaborators [Aharonov and Reznik, 2002,
Aharonov et al., 2017] presented, in my view, the simplest and the most elegant ar-
gument based on this type of infinite limit.

Consider a large number N of identical systems all prepared in the same state

|Ψ〉= ∑
i

αi|ai〉, (1)

which is a superposition of nondegenerate eigenstates of a variable A. Consider the
“average” variable Ā≡ 1

N ∑
N
n=1 An. Applying the universal formula [Aharonov and Vaidman, 1990]

A|Ψ〉= 〈Ψ |A|Φ〉 |Ψ〉+∆A|Ψ⊥〉, (2)

where 〈Ψ |Ψ⊥〉= 0, we obtain

Ā
N

∏
n=1
|Ψ〉n = 〈Ψ |A|Ψ〉

N

∏
n=1
|Ψ〉n +

∆A
N

N

∑
k=1

∏
n6=k
|Ψ〉n|Ψ⊥〉k. (3)

The amplitude of the first term in the right hand side of the equation is of order
1 while the amplitude of the second term (the sum) is proportional to 1√

N
, so in

the limit as N tends to infinity, the second term can be neglected and the product
state ∏

N
n=1 |Ψ〉n can be considered an eigenstate of the variable Ā with eigenvalue

〈Ψ |A|Ψ〉.
Now consider the measurement of Ā followed by measurements of A of each of

the individual systems. Ni is the number of outcomes A = ai. The probability of out-
come ai is defined as the limit pi ≡ limN→∞

Ni
N . To derive the Born rule we consider

the shift of the pointer of the measuring device measuring Ā, in two ways. First,
since in the limit, the state is an eigenstate with eigenvalue 〈Ψ |A|Ψ〉, the pointer is
shifted by this value. Second, consider the evolution backward in time given that we
have the results of individual measurements of variable A of each system. Then the
shift has to be ∑

N
i=1

aiNi
N . In the limit we obtain 〈Ψ |A|Ψ〉 = ∑i |αi|2ai = ∑

N
i=1 ai pi.

This equation can be generally true only if pi = |αi|2 for all eigenvalues ai. This
proves the Born rule.

The legitimacy of going to the limit N→ ∞ in the earlier proofs was questioned
in [Squires, 1990, Buniy et al., 2006] and Aharonov’s approach was analyzed in
[Finkelstein, 2003]. I am also skeptical about the possibility of arguments relying
on the existence of infinities to shed light on Nature. Surely, the infinitesimal anal-
ysis is very helpful, but infinities lead to numerous very peculiar sophisticated fea-
tures which we do not observe. I see no need for infinities to explain our experience.
Very large numbers can mimic everything and are infinitely simpler than infinity.
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The human eye cannot distinguish 24 digital pictures per second from continuous
motion, but infinite information is required to describe the latter. There is no need
for infinities to explain all what we see around.

Another reason for my skepticism that we can understand Nature by neglect-
ing vanishing terms in the infinite limit is the following example in which these
terms are crucial for providing common sense explanation. In the modification of
the interaction-free measurement [Elitzur and Vaidman, 1993] based on the Zeno
effect [Kwiat et al., 1995] we get information about the presence of an object with-
out being near it. The probability of success can be made as close to 1 as we wish by
changing the parameters. Together with this, there is an increasing number of times
at which the particle can be absorbed by the object with decreasing probability of
absorption. In the limit, the probability of even one absorption goes to zero, but
without these cases the success of interaction-free measurement seems to contradict
common sense. These are the cases in which there is an interaction. Taking the limit
in proving the Born rule is analogous to neglecting these cases.

The main reason why I think that this approach cannot be the solution is that I
do not see what is the additional assumption from which we derive the Born rule.
Consider a counter example. Instead of the Born rule, the Nature has “Equal rule”.
Every quantum measurement with several possible outcomes ai (with αi 6= 0) have
the same probability. Of course, this model contradicts experimental results, but it
does not contradict the formalism of quantum mechanics. I do not see how making
the number of experiments infinite can rule out Equal rule. Note that an additional
assumption ruling out this model is hinted in [Aharonov and Reznik, 2002] “the
results of physical experiments are stable against small perturbations”. A very small
change of the amplitude can make a finite change in the probability in the proposed
model. (This type of continuity assumption is present in some other approaches too.)

3 The Born rule and the measuring procedure

The Born rule is intimately connected to the measurement problem of quantum me-
chanics. Today there is no consensus about its solution. The Schrödinger equation
cannot explain definite outcomes of quantum measurements. So, if it does not ex-
plain the existence of a (unique) outcome, how can it explain its probability? It is the
collapse process (which is not explained by the Schrödinger equation) that provides
the unique outcome, so it seems hopeless to look for an explanation of the Born rule
based on the Schrödinger equation.

What might be possible are consistency arguments. If we accept the Hibert
space structure of quantum mechanics and we accept that there is probability for
an outcome of a quantum measurement, what might this probability measure be?
Itamar Pitowsky suggested to take it as the basis and showed how Gleason’s the-
orem [Gleason, 1957] leads to the Born rule [Pitowsky, 1998]. He was aware of
“two conceptual assumptions, or perhaps dogmas. The first is J. S. Bells dictum
that the concept of measurement should not be taken as fundamental, but should
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rather be defined in terms of more basic processes. The second assumption is that
the quantum state is a real physical entity, and that denying its reality turns quan-
tum theory into a mere instrument for predictions” [Bub and Pitowsky, 2010]. In
what followed, he recognized the problem as I do: “This last assumption runs very
quickly into the measurement problem. Hence, one is forced either to adopt an es-
sentially non-relativistic alternative to quantum mechanics (e.g. Bohm without col-
lapse, GRW with it); or to adopt the baroque many worlds interpretation which has
no collapse and assumes that all measurement outcomes are realized.” The differ-
ence is that he viewed “the baroque many worlds interpretation” as unacceptable
[Hemmo and Pitowsky, 2007], while I learned to live with it [Vaidman, 2018].

Maybe more importantly, we disagree about the first dogma. I am not ready
to accept “measurement” as a primitive. Physics has to explain all our experi-
ences, from observing results of quantum measurements to observing the color of
the sun and the sky at sunset. I do believe in the ontology of the wave function
[Vaidman, 2016, Vaidman, 2019] and I am looking for a direct correspondence be-
tween the wave function and my experience considering quantum observables only
as tools for helping to find this correspondence. I avoid attaching ontological mean-
ing to the values of these observables. It does not mean that I cannot discuss the Born
rule. The measurement situation is a well defined procedure and our experiences of
this procedure (results of measurements) have to be explained.

The basic requirement of the measurement procedure is that if the initial state is
an eigenstate of the measured variable, it should provide the corresponding eigen-
value with certainty. Any procedure fulfilling this property is a legitimate measuring
procedure. The Born rule states that the probability it provides should be correct for
any legitimate procedure, and this is a part of what has to be proved, but let us as-
sume that the fact that all legitimate procedures provide the same probabilities is
given. I will construct then a particular measurement procedure (which fulfills the
property of probability 1 for eigenstates) which will allow me to explain the proba-
bility formula of the Born rule.

Consider a measurement of variable A on a system initially in the state (1). The
measurement procedure has to include coupling to the measuring device and the
amplification part in which the result is written in numerous quantum systems pro-
viding a robust record. Until this happens, there is no point in discussing the proba-
bility, since outcomes were not created yet. So the measurement process is:

|Ψ〉∏
m
|r〉MD

m →∑
i

αi|ai〉∏
m∈Si

|X〉MD
m ∏

m/∈Si

|r〉MD
m , MD

m〈r|X〉MD
m = 0 ∀m (4)

where many of the initial, “ready” states of the numerous parts of the measuring
device |r〉MD

m are changed to macroscopically different (and thus orthogonal) states
|X〉MD

m , in correspondence with the eigenvalue ai. For all possible outcomes ai, the
set Si of subsystems of the measuring device which change their states to orthogonal
states has to be large enough. This part of the process takes place according to all
interpretations. In collapse interpretations at some stage the state collapses to one
term in the sum.
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This schematic description is not too far from reality. Such a situation appears in
a Stern-Gerlach experiment in which the atom, the spin component of which is mea-
sured, leaves a mark on a screen exciting numerous atoms. But I want to consider a
modified measurement procedure. Instead of a screen in which the hitting atom ex-
cites many atoms, we put arrays of single-atom detectors in the places corresponding
to particular outcomes. The arrays cover the areas of the quantum uncertainty of the
hitting atom. The arrays are different, as they have a different number Ni of single-
atom detectors which we arrange according to equation Ni = |αi|2N. (We assume
that we know the initial state of the system.)

Thus, first an entangled state of the atom with the sensors of the single-atom
detectors is created:

|Ψ〉∏
n
|r〉sen

n →∑
i

αi√
Ni
|ai〉∑

ki

|X〉sen
ki ∏

n 6=ki

|r〉sen
n , (5)

where |r〉sen
n represents an unexcited state of the sensor with label n running over

sensors of all arrays of single-photon detectors. N is the total number of detectors.
For each eigenvalue ai there is one array of Ni detectors with a superposition of ex-
cited states of sensors |X〉sen

ki
. At this stage, in spite of the large number of sensors,

the measurement has not yet taken place. It happens only after the amplification pro-
cess of the detectors which consists of excitation of a large number of subsystems of
individual detectors. In the modified measurement, instead of a multiple recording
of an event specified by the detection of ai, we record activation of every sensor
ki by activation of a large (not necessarily the same) number of quantum subsys-
tems m belonging to the set Sik . Including in our description these subsystems, the
description of the measurement process is:

|Ψ〉∏
n
|r〉sen

n ∏
m
|r〉MD

m → 1√
N ∑

i
|ai〉∑

ki

|X〉sen
ki ∏

n 6=ki

|r〉sen
n ∏

m∈Sik

|X〉MD
m ∏

m/∈Sik

|r〉MD
m ,

(6)
Here we also redefined the states |X〉sen

ki
to absorb the phase of αi to see explicitly

that all terms in the superposition have the same amplitude. Every term in the super-
position has macroscopic number of subsystems of detectors with states orthogonal
to states appearing in other terms. This makes all the terms separate. We have N
different options. They consist of sets according to all different possible eigenval-
ues when the set corresponding to eigenvalue ai has Ni elements. Assuming that
all options are equiprobable, we obtain the Born rule. The probability of a reading
corresponding to eigenvalue ai is pi =

Ni
N = |αi|2. And this procedure is a good mea-

surement according to our basic requirement: If the initial state is an eigenstate we
will know it with certainty.

An immediate question is: how can I claim to derive pi = |αi|2 when in my
procedure I put in by hand Ni

N = |αi|2? The answer is that making another choice
would not lead to a superposition of orthogonal terms with equal amplitudes, so
with another choice the derivation does not go through.
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This derivation makes the strong assumption that in the experiment, the firing of
each sensor has the same probability. It is arranged that all these events correspond
to terms in the superposition with the same amplitude, so the assumption is that
equal amplitudes correspond to equal probabilities. It is this fact that is considered
to be the main part in the derivation of the Born rule. I doubt that the formalism
of quantum mechanics by itself is enough to provide a proof for this statement, see
also [Barrett, 2017]. In the next section I will try to identify the assumptions added
in various proofs of the Born rule.

Without the proof of the connection between amplitudes and probabilities, the
analysis of the experiment I presented above is more of an explanation of the
Born rule than its derivation. We also use the assumption that all valid measure-
ment experimental procedures provide the same probabilities for outcomes. The
modified procedure has a very natural combinatorial counting meaning of prob-
ability. It can be applied to the collapse interpretations when we count possible
outcomes and in the MWI where we count worlds. The objection that the num-
ber of worlds is not a well defined concept [Wallace, 2010] is answered when we
put weights on the worlds (measure of existence [Vaidman, 1998, Greaves, 2004,
Groisman et al., 2013]. This provides also a natural transition to the case of usual
measurement which does not add artificial splittings responsible for equal weights
of all worlds.

4 Symmetry arguments

In various derivations of the Born rule, the statement that equal amplitudes lead to
equal probabilities relies on symmetry arguments. The starting point is the simplest
(sometimes named pivotal) case

|Ψ〉= 1√
2
(|a1〉+ |a2〉). (7)

The pioneer in attempting to solve this problem was Deutsch [Deutsch, 1999] whose
work was followed by extensive development by Wallace [Wallace, 2007], an ar-
guably different derivation by Zurek [Zurek, 2005] and some other attempts such as
Sebens and Carroll [Sebens and Carroll, 2016] and also my contribution with Mc-
Queen [Vaidman, 2012, McQueen and Vaidman, 2018]. The key element of these
derivations is the symmetry under permutation between |a1〉 and |a2〉. It is a very
controversial topic, with numerous accusations of circularity for some of the proofs
[Barnum et al., 2000, Saunders, 2004, Gill, 2005, Schlosshauer and Fine, 2005, Lewis, 2010,
Hemmo and Pitowsky, 2007, Rae, 2009, Dawid and Thébault, 2014].

In all these approaches there is a tacit assumption (which I also used above) that
the probability of an outcome of a measurement of A does not depend on the pro-
cedure we use to perform this measurement. Another assumption is that probability
depends only on the quantum state. In the Deutsch-Wallace approach some manip-
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ulations, swapping, and erasures are performed to eliminate the difference between
|a1〉 and |a2〉, leading to probability half due to symmetry. If the eigenstates do not
have internal structure except for being orthogonal states, then symmetry can be
established, but it seems to me that these manipulations do not provide the proof
for important realistic cases in which the states are different in many respects. It
seems that what we need is a proof that all properties, except for amplitudes, are
irrelevant. I am not optimistic about the existence of such a proof without adding
some assumptions. Indeed, what might rule out a naive hypothetical probability rule
according to which probabilities for all outcomes corresponding to nonzero ampli-
tudes are equal?

Assuming continuity for probabilities as functions of time will rule it out, but
this is an additional assumption. The Deutsch-Wallace proof is in the framework of
the MWI, i.e. that the physical theory is just unitary evolution which is, of course,
continuous, but it is about amplitudes as functions of time. The probability of an out-
come is about our experience which supervenes on the quantum state, but a priori
there are no constraints on the rule which connects the quantum state with our ex-
perience. Note that we cannot use what we know about our experience: the program
is supposed to derive what we should experience.

Zurek made a new twist in the derivation of the Born rule [Zurek, 2005]. His key
idea is to consider entangled systems and rely on “envariance” symmetry. A unitary
evolution of a system which can be undone by the unitary evolution of the system it
is entangled with. For the pivotal case, the state is

|Ψ〉= 1√
2
(|a1〉|1〉+ |a2〉|2〉), (8)

where |1〉, |2〉 are orthogonal states of the environment. The unitary swap of |a1〉 ↔
|a2〉 followed by the unitary swap of the entangled system |1〉 ↔ |2〉 brings us back
to the original state which, by assumption, corresponds to the original probabilities.
Another of Zurek’s assumptions is that manipulation of the second system does not
change the probability of the measurement on the system, while the swap of the
states of the systems swaps the probabilities for the two outcomes. This proves that
the probabilities for the outcomes in the pivotal example must be equal.

In my view, the weak point is the claim that swapping the states of the system
swaps the probabilities of the outcomes. This property follows from the quantum
formalism when the initial state is an eigenstate, but in our case when the mechanism
for the choice of the outcome is unknown, we also do not know how it is affected
by unitary operations. Note, that it is not true for the Stern-Gerlach experiment in
the framework of Bohmian mechanics.

Zurek, see also [Wallace, 2010, Baker, 2007, Boge, 2019], emphasises the im-
portance of decoherence: entanglement of environment with eigenstates of the sys-
tem. Indeed, decoherence is almost always present in quantum measurements and
its presence might speed up the moment we can declare that the measurement has
been completed, but, as far as I understand, decoherence is neither necessary, nor
sufficient for completing a quantum measurement. It is not necessary, because it is
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not practically possible to perform an interference experiment with a macroscopic
detector in macroscopically different states even if it is isolated from the environ-
ment. It is not sufficient, because decoherence does not ensure collapse and does
not ensure splitting of a world. For a proper measurement, the measuring device
must be macroscopic. It is true that an interaction of the system with an environ-
ment, instead of a macroscopic measuring device, might lead to a state similar to
(4) with macroscopic number of microscopic systems of environment “recording”
the eigenvalue of the observable. It, however, does not ensure that the measurement
happens. It is not clear that macroscopic number of excited microsystem causes a
collapse, see analysis of a such situation in the framework of the physical collapse
model [Ghirardi et al., 1986] in [Albert and Vaidman, 1989, Aicardi et al., 1991]. In
the framework of the many-worlds interpretation we need splitting of worlds. The
moment of splitting does not have a rigorous definition, but a standard definition
[Vaidman, 2018] is that macroscopic objects must have macroscopically different
states. Decoherence might well happen due to a change of states of air molecules
which do not represent any macroscopic object.

What I view as the most problematic “symmetry argument proof” of probability
half for the pivotal example is the analysis of Sebens and Caroll [Sebens and Carroll, 2016],
see also [Kent, 2015]. Sebens and Caroll considered the measurement in the frame-
work of the MWI and apply the uncertainty of self-location in a particular world as
a meaning of probability [Vaidman, 1998]. However, in my understanding of the ex-
ample they consider, this uncertainty does not exist [McQueen and Vaidman, 2018].
In their scenario, a measurement of A on a system in state (7) is performed on a
remote planet. Sebens and Caroll consider a question: What is the probability of
an observer who is here, i.e., far away from the planet, to be in a world with a
particular outcome? This question is illegitimate, because he is certainly present
in both worlds, there is no uncertainty here. This conclusion is unavoidable in
the MWI as I understand it [Vaidman, 2018], which is a fully deterministic theory
without any room for uncertainty. However, uncertainty in the MWI is considered
in [Saunders, 2004, Saunders and Wallace, 2008], so if this program succeeds (see
however [Lewis, 2007]), then the Sebens-Caroll proof might make sense. Another
way to make sense of the Sebens-Caroll proof was proposed in [Tappenden, 2017]
based on his unitary interpretation of mind, but I have difficulty accepting this meta-
physical picture.

A scenario in which the observer is moved to different locations according to the
result of measurement without getting information about the result [Vaidman, 1998]
allows us to consider the probability of self-location based on his ignorance and
without uncertainty in the theory. This by itself however, does not prove the proba-
bility half for the pivotal case. The proof [McQueen and Vaidman, 2018], which is
applicable to all interpretations has two basic assumptions. First, it is assumed that
the space in Nature has symmetry, so we can construct the pivotal case with sym-
metry between the states |a1〉 and |a2〉. We do not rely on permutation of states, we
rely on the symmetry of physical space and construct symmetric states with remote
locations 1 and 2. The second assumption is that everything fulfills the postulate of
the theory of special relativity according to which we cannot send signals faster than
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light. Changing probability by a remote action is sending signals. This proves that
changing the shape or even splitting a remote state will not change the probability
of finding a1 provided its amplitude was not changed.

5 Other approaches

Itamar Pitowsky’s analysis of the Born rule on the basis of Gleason’s theorem
[Pitowsky, 1998] was taken further to the case of generalized measurements [Caves et al., 2004].
Galley and Masanes [Galley and Masanes, 2017] continued research which sin-
gles out the Born rule from other alternatives. Note that they also used symme-
try (“bit symmetry”) to single out the Born rule. Together with Muller, they ex-
tended their analysis [Masanes et al., 2019] and claimed to prove everything just
from some “natural” properties of measurements which are primitive elements in
their theory. So, people walked very far on the road paved by Itamars’s pioneer-
ing works. I have to admit that I am not sympathetic to this direction. The authors
of [Masanes et al., 2019] conclude “Finally, having cleared up unnecessary postu-
lates in the formulation of QM, we find ourselves closer to its core message.” For
me it seems that they go away from physics. Quantum mechanics was born to ex-
plain physical phenomena that classical physics could not. It was not a probability
theory. It was not theory of measurements, and I hope it will not end as such. “Mea-
surements” should not be primitives, they are physical processes as any other and
physics should explain all of them.

Similarly, I cannot make much sense of claims that the Born rule appears even in
classical systems presented in the Hilbert space formalism [Brumer and Gong, 2006,
Deumens, 2019]. Note that in the quantum domain the Born rule appears even out-
side the framework of Hilbert spaces in [Saunders, 2004] who strongly relies on
operational assumptions such as a continuity assumption: “sufficiently small vari-
ations in the state-preparation device, and hence of the initial state, should yield
small variations in expectation value.” This assumption is much more physical than
postulates of general probabilistic theories.

The dynamical derivation in the framework of the Bohmian interpretation cham-
pioned by Valentini [Valentini and Westman, 2005, Towler et al., 2011] who argued
that under some (not too strong) requirement of complexity, the Born distribution
arises similar to thermal probabilities in ordinary statistical mechanics. See ex-
tensive discussion in [Callender, 2007] and recent analysis in [Norsen, 2018] who
brings also similar ideas from [Dürr et al., 1992]. The fact that for some initial con-
ditions of some systems relaxation to Born statistics does not happen is a serious
weakness of this approach. What I find more to the point as a proof of the Born rule
is that the Born statistical distribution remains invariant under time evolution in all
situations. And that under some very natural assumptions it is the only distribution
with this strong property [Goldstein and Struyve, 2007].

Wallace [Wallace, 2010] and Saunders [Saunders, 2010] advocate analyzing the
issue of probability in the framework of the consistent histories approach. It pro-
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vides formal expressions which fit the probability calculus axioms. However, I have
difficulty seeing what these expressions might mean. I failed to see any ontologi-
cal meaning for the main concept of the approach “the probability of a history”. It
also has no operational meaning apart from the conditional probability of an actu-
ally performed experiment [Aharonov et al., 1964], while apparently the approach
is supposed to be general enough to describe evolution of systems which were not
measured at the intermediate time.

6 Summary of my view

I feel that there is a lot of confusion in the discussions of the subject and it is im-
portant to make the picture much more clear. Even if definite answers might not be
available now, the question: What are the open problems? can be clarified. First, it
is important to specify the framework: collapse theory, hidden variables approach
or noncollapse theory. Although in many cases the “derivation of the Born rule”
uses similar structure and arguments in all frameworks, the conceptual task is very
different. I believe that in all frameworks there is no way to prove the Born rule
from other axioms of standard quantum mechanics. The correctly posed question is:
What are the additional assumptions needed to derive the Born rule?

Standard quantum mechanics tells us that there is unitary evolution until it leads
to a superposition of quantum states corresponding to macroscopically different
classical pictures. There is no precise definition of “macroscopically different clas-
sical pictures” and this is the main part of the measurement problem, but discussions
of the Born rule assume that this ambiguity is somehow solved, or proven irrelevant,
and analyze the nonunitary process happening when we reach this stage. I see no
possibility to derive from laws of unitary evolution the law of this nonunitary pro-
cess. It is usually assumed the process depends solely on the quantum state, i.e. that
the probability of an outcome of a measurement of an observable does not depend
on some hidden variables and does not depend on the way the observable is mea-
sured. The process also should not alter the unitary evolution when a superposition
of states corresponding to macroscopically different classical pictures was not cre-
ated. Still, I see nothing that can rule out proposals different from the Born rule, e.g.,
equal probability for all possible outcomes. Remember, existence and identification
of a situation when the alternatives are created but cannot coexist anymore is granted
before the discussion of the Born rule. In my view it is a ridiculous (although popu-
lar in the many-worlds framework) proposal: Why should different alternatives have
identical probabilities?

Thus, we have to add something to derive the Born rule. We are not supposed
to rely on experimental results, they do single out the Born rule, but this is not
a “derivation”. Instead, if we take some features of observed results as the ba-
sis, it is considered as a derivation. I am not sure that it is really better, unless
these features are considered not as properties of nature, but as a basic reason
for nature to be as it is. Then the Born rule derivations become a part of the pro-
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gram to get quantum mechanics from simple axioms [Popescu and Rohrlich, 1994,
Hardy, 2001, Chiribella et al., 2011]. In theses derivations, quantum mechanics is
usually considered as a general probability theory and the main task is to derive the
Born rule.

In [McQueen and Vaidman, 2018] the program is more modest. Unitary quan-
tum mechanics is assumed and two physical postulates are added. First, that there
are symmetries in space and second that there is no supernal signalling. The first
principle allows us to construct a pivotal example described by (7) in which there
is symmetry between states |a1〉 and |a2〉. The second principle allows us to change
one of the eigenstates in the pivotal state without changing the probability to find
the other eigenvalue. This is the beginning of the procedure, first shown by Deutsch
in [Deutsch, 1999], who pioneered these types of derivations.

The situation in the framework of the MWI is conceptually different. The phys-
ical essence of the MWI is: unitary evolution of a quantum state of the universe is
all that there is. There is no additional process of collapse behaviour which should
be postulated. So it seems that here there is no room for additional assumptions and
that the Born rule must be derived just from the unitary evolution.

However, the MWI has a problem with probability even before we discuss the
quantitative formula of the Born rule. The standard approach to the probability of
an event requires that there to be a matter of fact about whether this event and not
the other takes place, but in the MWI all events take place. On the other hand, we do
have experience of one particular outcome when we perform a measurement. My
resolution of this problem [Vaidman, 1998] is that indeed, there is no way to ask
what is the probability of what will happen, because all outcomes will be actual.
The “probability” rule is still needed to explain statistics of observed measurements
in the past. There are worlds with all possible statistics, but we happen to observe
Born rule statistics. The “probability” explaining these statistics is the probability
of self-location in a particular world. In [Vaidman, 1998] I constructed a scenario
with quantum measurements in which the observer is split (and together with him,
his world) according to the outcome of the measurement without being aware of
the result of the measurement. This provides the ignorance probability of the ob-
server about the world specified by the outcome of the measurement he is a part of.
Tappenden [Tappenden, 2010] argues that merely considering such a construction
allows us to discuss the Born rule. These are supporting arguments of the solution:
there is no probabilistic process in Nature: with certainty all possible outcomes of
a quantum measurement will be realized, but an observer, living by definition in
one of the worlds, can consider the question of probability of being located in a
particular world.

All that is in nature, according to MWI is a unitary evolving quantum state of the
universe and observers correspond to parts of this wave function [Vaidman, 2016,
Vaidman, 2019]. So, there is a hope that the experience of observers, after con-
structing the theory of observers (chemistry, biology, psychology, decision theory,
etc.) can be, in principle, explained solely from the evolution of the quantum state.
Apparently, experiences of an observer can be learned from his behavior which is
described by the evolution of the wave function. Then, it seems that the Born rule
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should be derivable from the laws of quantum mechanics. However, I believe that
this is not true.

Consider Alice and Bob at separate locations and they have a particle in a state
(7) where |a1〉 corresponds to a particle being at Alice’s site and |a2〉 corresponds
to a particle being at Bob’s site. Now assume that instead of the Born rule, which
states that the probability of self-location in a world is proportional to the square
of the amplitude, Nature has the Equal rule which yields the same probability of
self location in all the worlds, i.e. probability 1

N , where N is the number of worlds.
Equal rule allows superluminal signaling. Alice and Bob agree that at a particular
time t Alice measures the presence of the particle at her site, i.e. she measures the
projection on state |a1〉. To send bit 0 Bob does nothing. This will lead to probability
half for finding the particle by Alice. For sending bit 1, just before time t, Bob
performs a unitary operation on the part of the wave at his site splitting it to a
hundred orthogonal states

|a2〉 →
100

∑
k=1
|bk〉 (9)

and immediately measures operator B which tells him the eigenvalue bk. In this
case, prior to measurement, Alice is in one hundred and one worlds. The probability
to find herself in any one of them is 1

101 . Her measurement tests if she is in one
particular world so she has only probability of 1

101 to find the particle at her site.
Bob’s action changes the probability of Alice’s outcome. With measurements on a
single particle, the communication is not very reliable, but using an ensemble, there
will be only very rare cases of error. The Equal rule will ensure that Alice and Bob
meeting in the future will (most probably) verify this.

We know that unitary evolution does not allow superluminal communication.
(When we consider a relativistic generalisation of the Schrödinger equation.) Can,
nevertheless, given that the actual probability rule of self-location is the Equal rule
(and not the Born rule), a supertechnology, capable of observing superposition of
Alice’s and Bob’s worlds, use the above procedure for sending superluminal sig-
nals? No! Only Alice and Bob inside their worlds will have this ability and it will
not contradict relativistic properties of physics describing unitary evolution of all
worlds together.

What I argue here, is that the situation in the framework of MWI is not different
from collapse theories. There is a need for an independent probability postulate. In
collapse theory it is a physical postulate telling us about the dynamics of the ontol-
ogy, which I consider as the quantum state of the universe which in collapse theories
describes a single world. In MWI the postulate belongs to the part connecting the
observer’s experiences with the ontology which evolves unitarily and has nothing to
do with the Born rule.

We can justify the Born rule postulate of self-location by experimental evidence,
or by requiring the relativistic constraint of superluminal signaling also within the
world. I find a convincing explanation in the concept of the measure of existence of a
world [Vaidman, 1998, Groisman et al., 2013]. While there is no reason to postulate
that the probability of self-location in every world is the same, it is natural to pos-
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tulate that the probability of self-location in worlds of equal existence (equal square
of the amplitude) is the same. Adding another natural assumption that probability of
self-location in a particular world should be equal to the sum of the probability of
self-location in all the worlds which split from the original one, provides the Born
rule.

My main conclusion is that there is no way to derive the Born rule without addi-
tional assumptions. It is true both in the framework of collapse theories and, more
surprisingly, in the framework of the MWI. The main open question is not the valid-
ity of various proofs, but what are the most natural assumptions we should add for
proving the Born rule.

This work has been supported in part by the Israel Science Foundation Grant No.
1311/14.
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Dawid and Thébault, 2014. Dawid, R. and Thébault, K. P. (2014). Against the empirical viability
of the deutsch–wallace–everett approach to quantum mechanics. Studies in History and Philos-
ophy of Science Part B: Studies in History and Philosophy of Modern Physics, 47:55–61.

Deumens, 2019. Deumens, E. (2019). On classical systems and measurements in quantum me-
chanics. Quantum Studies: Mathematics and Foundations.

Deutsch, 1999. Deutsch, D. (1999). Quantum theory of probability and decisions. Proceedings
of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences,
455(1988):3129–3137.
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