9 research outputs found

    Miniaturizable ion-selective arrays based on highly stable polymer membranes for biomedical applications

    Get PDF
    Poly(vinylchloride) (PVC) is the most common polymer matrix used in the fabrication of ion-selective electrodes (ISEs). However, the surfaces of PVC-based sensors have been reported to show membrane instability. In an attempt to overcome this limitation, here we developed two alternative methods for the preparation of highly stable and robust ion-selective sensors. These platforms are based on the selective electropolymerization of poly(3,4-ethylenedioxythiophene) (PEDOT), where the sulfur atoms contained in the polymer covalently interact with the gold electrode, also permitting controlled selective attachment on a miniaturized electrode in an array format. This platform sensor was improved with the crosslinking of the membrane compounds with poly(ethyleneglycol) diglycidyl ether (PEG), thus also increasing the biocompatibility of the sensor. The resulting ISE membranes showed faster signal stabilization of the sensor response compared with that of the PVC matrix and also better reproducibility and stability, thus making these platforms highly suitable candidates for the manufacture of robust implantable sensors. Keywords: ion-selective electrode (ISE) sensor, pH detection, ischemia, electrochemistry, implantable device, biomedicine, endoscop

    Simple and fast method for fabrication of endoscopic implantable sensor arrays

    Get PDF
    Here we have developed a simple method for the fabrication of disposable implantable all-solid-state ion-selective electrodes (ISE) in an array format without using complex fabrication equipment or clean room facilities. The electrodes were designed in a needle shape instead of planar electrodes for a full contact with the tissue. The needle-shape platform comprises 12 metallic pins which were functionalized with conductive inks and ISE membranes. The modified microelectrodes were characterized with cyclic voltammetry, scanning electron microscope (SEM), and optical interferometry. The surface area and roughness factor of each microelectrode were determined and reproducible values were obtained for all the microelectrodes on the array. In this work, the microelectrodes were modified with membranes for the detection of pH and nitrate ions to prove the reliability of the fabricated sensor array platform adapted to an endoscope

    Magnetite-Amyloid-β deteriorates activity and functional organization in an in vitro model for Alzheimer's disease

    Get PDF
    The understanding of the key mechanisms behind human brain deterioration in Alzheimer' disease (AD) is a highly active field of research. The most widespread hypothesis considers a cascade of events initiated by amyloid-β peptide fibrils that ultimately lead to the formation of the lethal amyloid plaques. Recent studies have shown that other agents, in particular magnetite, can also play a pivotal role. To shed light on the action of magnetite and amyloid-β in the deterioration of neuronal circuits, we investigated their capacity to alter spontaneous activity patterns in cultured neuronal networks. Using a versatile experimental platform that allows the parallel monitoring of several cultures, the activity in controls was compared with the one in cultures dosed with magnetite, amyloid-β and magnetite-amyloid-β complex. A prominent degradation in spontaneous activity was observed solely when amyloid-β and magnetite acted together. Our work suggests that magnetite nanoparticles have a more prominent role in AD than previously thought, and may bring new insights in the understanding of the damaging action of magnetite-amyloid-β complex. Our experimental system also offers new interesting perspectives to explore key biochemical players in neurological disorders through a controlled, model system manner

    Electrochemical multi-sensors for biomedical applications

    Get PDF
    In this thesis, pH and potassium all-solid-state ISE based on potentiometry and bioimpedance sensors were designed, fabricated and integrated in a miniaturized array for its application in endoscopic surgery for in vivo ischemia detection inside the stomach. To achieve this goal, the developed array withstood the low pH and corrosive condition in the gastric juice of the stomach, by modifying the surface with a conductive Ag/AgCl ink containing hydrophilic and hydrophobic groups. That creates a stable and robust candidate for low pH applications. However, these sensors have to demonstrate besides stability, high sensitivity, and selectivity. For this purpose, different ionophores specific to a single ion were tested. Octadecyl isonicotinate was the one that shown better results as pH ionophore and valinomycin, bis [(benzo-15-crown-4)-4-ylmethyl] pimelate for potassium detection. All these ionophores were embedded in PVC polymer membrane containing also plasticizers such as 2-nitrophenyl octyl ether, bis (1-butylpentyl) adipate (BBPA) and liphophilic anionic additives such as potassium tetrakis (4-chlorophenyl) borate (KTpClPB). The specific compositions of membranes to detect potassium or pH were optimized for the better performance of the sensors. pH ISE sensor shows a nernstian behavior (-54,38 mV/pH) at low pH and a nearly nernstian behavior at physiological pH (-34,899 mV/pH). Bioimpedance sensor was tested and optimized in vitro with different solutions of ions concentration to mimic ischemia detection and with different kinds of tissues from different nature. For this purpose, chicken fat and breast tissues were taken as a model for mimicking non-ischemic and ischemic states respectively. The effect of electrodes insulation as well as the pressure applied on the tissue was studied. The dependence of the impedance response with different pressure applied to the sensor was overcome by applying magnetic field attachment. The sensor array was modified with ring magnets which were attracted by an external magnet, giving stable and reliable signal discarding mechanical motion. The shape and size of the sensor array were designed for being adapted to the commercially available gastroendoscopes. Round shaped cylinder of 7 mm diameter was fabricated with 12 electrodes pin of 600 µm diameter, containing 3 RE, 3 pH and 2 potassium all-solid-state sensors and 4 electrodes in a row for impedance measurements. The sensor array was successfully integrated in commercial endoscope and inserted inside the pig stomach. The blood flow of certain area of the stomach was interrupted by ligating or crossclamping vessels and organ wall. Ischemia and reperfusion steps were sensed successfully with potassium and pH sensors. These results also indicate that information about hypoxic tissue damage can be collected with this array. Ischemia was also sensed on small intestine tissue by opening the abdominal part of the body and getting the sensor array in contact with the intestine. By crossclamping of mesenteric artery by tourniquets and scissors, ischemic and reperfusion states were controlled. Results proved that ischemia and reperfusion can be monitored by our integrated sensor array. As a conclusion, a novel all-solid-state potentiometric, miniaturized, low cost and mass producible pH, potassium all-solid-state ISE and impedance sensors integrated in an array was successfully fabricated for detecting ischemia inside the stomach by means of endoscopic techniques and also on small intestine. This array was tested in vitro and vivo giving reproducible and reliable results. The developed all-solid-state pH sensors permit low pH sensing from 0.7-2.5, which is the only example in the literature that allows so low pH detection, and so make this sensor a unique device for stomach detection.El diagnóstico médico es uno de los campos que han obtenido más ventajas de la capacidad de los electrodos selectivos de iones (ESI) para la detección de iones, ya que los cambios en la concentración de estos elementos están directamente relacionados con diferentes enfermedades. La detección de isquemia es una de las favorecidas por estos sensores. La isquemia es una disminución del suministro de sangre a un órgano y se requiere una detección rápida y precisa. Los métodos de detección in situ en el tejido de los órganos conllevan una detección temprana de la isquemia y el estómago es uno de los órganos más importantes en la detección de Ischemia. Sin embargo, el bajo pH del jugo gástrico del estómago hace difícil la fabricación de sensores de estado sólido con ESI estables y funcionales, principalmente debido a la interferencia de aniones y al problema de la adhesión entre la membrana ESI y la superficie del electrodo. En esta tesis, se han diseñado y fabricado electrodos selección de iones de pH y potasio ESI de estado sólido basados en la potenciometría y sensores de bioimpedancia y se han integrado en una matriz en miniatura para su aplicación en la cirugía endoscópica para la detección de isquemia in vivo en el interior del estómago. El conjunto de sensores se integró con éxito en endoscopio comercial y se inserto en el interior del estómago de un cerdo. El flujo de sangre de cierta área del estómago se interrumpió mediante la ligación o pinzamiento de los vasos sanguineos y la pared del órgano. Los pasos de isquemia y reperfusión fueron detectados con éxito con los sensores de potasio y de pH. Estos resultados también indican que se puede obtener información sobre el daño en el tejido hipóxico recogido con esta matriz. Los sensores de pH de sólido desarrollados permiten la detección pH bajos de 0,7 a 2,5, que es el único ejemplo en la literatura de detección de pH tan bajos con este tipo de sensores y por lo tanto hacen que sea este sensor de un dispositivo único para la detección de isquemia en el estómago

    Miniaturizable ion-selective arrays based on highly stable polymer membranes for biomedical applications

    No full text
    Poly(vinylchloride) (PVC) is the most common polymer matrix used in the fabrication of ion-selective electrodes (ISEs). However, the surfaces of PVC-based sensors have been reported to show membrane instability. In an attempt to overcome this limitation, here we developed two alternative methods for the preparation of highly stable and robust ion-selective sensors. These platforms are based on the selective electropolymerization of poly(3,4-ethylenedioxythiophene) (PEDOT), where the sulfur atoms contained in the polymer covalently interact with the gold electrode, also permitting controlled selective attachment on a miniaturized electrode in an array format. This platform sensor was improved with the crosslinking of the membrane compounds with poly(ethyleneglycol) diglycidyl ether (PEG), thus also increasing the biocompatibility of the sensor. The resulting ISE membranes showed faster signal stabilization of the sensor response compared with that of the PVC matrix and also better reproducibility and stability, thus making these platforms highly suitable candidates for the manufacture of robust implantable sensors. Keywords: ion-selective electrode (ISE) sensor, pH detection, ischemia, electrochemistry, implantable device, biomedicine, endoscop

    Simple and fast method for fabrication of endoscopic implantable sensor arrays

    No full text
    Here we have developed a simple method for the fabrication of disposable implantable all-solid-state ion-selective electrodes (ISE) in an array format without using complex fabrication equipment or clean room facilities. The electrodes were designed in a needle shape instead of planar electrodes for a full contact with the tissue. The needle-shape platform comprises 12 metallic pins which were functionalized with conductive inks and ISE membranes. The modified microelectrodes were characterized with cyclic voltammetry, scanning electron microscope (SEM), and optical interferometry. The surface area and roughness factor of each microelectrode were determined and reproducible values were obtained for all the microelectrodes on the array. In this work, the microelectrodes were modified with membranes for the detection of pH and nitrate ions to prove the reliability of the fabricated sensor array platform adapted to an endoscope

    Magnetite-Amyloid-β deteriorates activity and functional organization in an in vitro model for Alzheimer's disease

    No full text
    The understanding of the key mechanisms behind human brain deterioration in Alzheimer' disease (AD) is a highly active field of research. The most widespread hypothesis considers a cascade of events initiated by amyloid-β peptide fibrils that ultimately lead to the formation of the lethal amyloid plaques. Recent studies have shown that other agents, in particular magnetite, can also play a pivotal role. To shed light on the action of magnetite and amyloid-β in the deterioration of neuronal circuits, we investigated their capacity to alter spontaneous activity patterns in cultured neuronal networks. Using a versatile experimental platform that allows the parallel monitoring of several cultures, the activity in controls was compared with the one in cultures dosed with magnetite, amyloid-β and magnetite-amyloid-β complex. A prominent degradation in spontaneous activity was observed solely when amyloid-β and magnetite acted together. Our work suggests that magnetite nanoparticles have a more prominent role in AD than previously thought, and may bring new insights in the understanding of the damaging action of magnetite-amyloid-β complex. Our experimental system also offers new interesting perspectives to explore key biochemical players in neurological disorders through a controlled, model system manner

    Innovation and technology transfer of medical devices fostered by cross-disciplinary communities of practitioners

    No full text
    Commercialisation of emerging technological innovations such as medical devices can be a time-consuming and lengthy process resulting in a market entrance failure. To tackle this general problem, major challenges are being analysed, principally focusing on the role of Communities of Practitioners (CoPs) in the process of effective transfer of high-value emerging technologies from academia to market. Taking a case study approach, this document describes the role of a cross-disciplinary CoP in the technology transfer process within a convergence scenario. The case presented is a sensor array for ischemia detection developed by different practitioners from diverse organisations: university, research institution, hospital, and a scientific park. The analysis also involves the innovation ecosystem where all stakeholders are taken into account. This study contributes to a better understanding of the managerial implications of CoP fostering technology transfer and innovation, principally focused on the current need for new biomedical technologies and tools.Peer ReviewedPostprint (published version
    corecore