364 research outputs found

    The effect of vegetation patterns on Aeolian mass flux at regional scale: a wind tunnel study

    Get PDF
    Although insight on the effect of vegetation pattern on Aeolian mass transport is essential for re-planting degraded land, only limited knowledge on this effect is available. The objective of this research was to understand the effect of vegetation design on the Aeolian mass flux inside a single land unit and at the borders among land units. A simulation of Atriplex halimus shrubs inside a wind tunnel was made, and sand redistribution was measured after the application of 200-230 seconds wind at a speed of 11 ms-1. The study showed that: 1) sediment maximum transport inside a single land unit is related to the neighboring land units and to the vegetation pattern within both the unit itself and the neighboring land units; 2) the effect of neighboring land units includes the protection effect and the ruling of sediment crossing from one land unit to the neighboring land units; 3) for the designing of re-planting of degraded land the ‘streets’ (zones of erosion areas similar to streets) effect need to be considered; and 4) in addition to the general knowledge needed on the effect of vegetation pattern on the erosion and deposition within an area, it is important to have insight on the redistribution of sediment at small scales upon the aim of the project

    Enterococcus faecalis conjugative plasmid pAM373: complete nucleotide sequence and genetic analyses of sex pheromone response

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/74708/1/j.1365-2958.2000.02072.x.pd

    Effect of milk replacer feeding program on performance of Belgian Blue double-muscled rearing calves

    Get PDF
    One hundred and four Belgian Blue double-muscled calves were divided into four groups to examine the effects of different milk replacer (MR) programs. Calves in treatment group 1 received a MR diet reconstituted at 125 g/l, fed at 10 % of their initial live weight in two meals daily. Weaning occurred abruptly at a concentrate intake of 0.5 kg/d. Treatment 2 was similar to treatment 1, except that weaning occurred at a concentrate intake of 0.75 kg/d. Treatment 3 was similar to treatment 2, except that MR was fed once daily at 5 % of initial body weight from a concentrate intake of 0.5 kg/d onwards. Treatment 4 was similar to treatment 3, except that MR at a concentration of 200 g/l was fed once daily from the third week until a concentrate intake of 0.5 kg/d. Similar concentrates and grass hay were fed. Pre-weaning gain averaged 0.51, 0.57, 0.56 and 0.53 kg/d, respectively (P < 0.05; SEM: 0.01). Daily nutrient intake was lowest for treatment 1. No effect on diarrhoea was found. Post-weaning gain did not differ among treatments. Daily gain during the whole rearing period (20 weeks) averaged 0.83 kg and was not affected by treatment. Calves assigned to treatment 1 had a lower daily intake of MR, while feed efficiency tended to be worse. Weaning can be successfully accelerated by skipping over a meal when concentrate intake exceeded 0.5 kg/d, or by combining one MR meal daily with an increased concentration of 200 g/l from an age of three weeks onwards

    The AppNL-G-F mouse retina is a site for preclinical Alzheimer's disease diagnosis and research

    Get PDF
    In this study, we report the results of a comprehensive phenotyping of the retina of the AppNL-G-F mouse. We demonstrate that soluble Aβ accumulation is present in the retina of these mice early in life and progresses to Aβ plaque formation by midlife. This rising Aβ burden coincides with local microglia reactivity, astrogliosis, and abnormalities in retinal vein morphology. Electrophysiological recordings revealed signs of neuronal dysfunction yet no overt neurodegeneration was observed and visual performance outcomes were unafected in the AppNL-G-F mouse. Furthermore, we show that hyperspectral imaging can be used to quantify retinal Aβ, underscoring its potential as a biomarker for AD diagnosis and monitoring. These fndings suggest that the AppNL-G-F retina mimics the early, preclinical stages of AD, and, together with retinal imaging techniques, ofers unique opportunities for drug discovery and fundamental research into preclinical AD

    The effect of vegetation patterns on Aeolian mass flux at regional scale: A wind tunnel study

    Get PDF
    ABSTRACT Although insight on the effect of vegetation pattern on Aeolian mass transport is essential for re-planting degraded land, only limited knowledge on this effect is available. The objective of this research was to understand the effect of vegetation design on the Aeolian mass flux inside a single land unit and at the borders among land units. A simulation of Atriplex halimus shrubs inside a wind tunnel was made, and sand redistribution was measured after the application of 200-230 seconds wind at a speed of 11 ms-1. The study showed that: 1) sediment maximum transport inside a single land unit is related to the neighboring land units and to the vegetation pattern within both the unit itself and the neighboring land units; 2) the effect of neighboring land units includes the protection effect and the ruling of sediment crossing from one land unit to the neighboring land units; 3) for the designing of re-planting of degraded land the ‘streets’ (zones of erosion areas similar to streets) effect need to be considered; and 4) in addition to the general knowledge needed on the effect of vegetation pattern on the erosion and deposition within an area, it is important to have insight on the redistribution of sediment at small scales upon the aim of the project. Key words: wind erosion; vegetation pattern; wind-blown mass transport; wind tunne

    Report on the effectiveness of vegetative barriers to regulate simulated fluxes of runoff and sediment in open agricultural landscapes (Flanders, Belgium)

    Full text link
    Vegetative barriers are increasingly used to reduce sediment export from cropland and thus mitigate negative off-site consequences of soil erosion. Here, we report and discuss the effectiveness of vegetative barriers implemented in Flanders (Belgium) to buffer the flows of water and sediment. The three types of vegetative barriers studied are made of straw bales, wood chips or bales of coconut- fibre. Based on three simulated runoff experiments performed in the field, we calculated the hydraulic roughness and sediment deposition ratio. Our experiments showed that the barriers made of coconut-fibre bales performed markedly better than those of straw bales or wood chips (Manning's n values of 1.355, 1.049 and 2.231 s m-1/3 and a sediment deposition ratio of 19%, 38% and 64% for barriers made of straw bales, wood chips and coconut-fibre bales, respectively, during the first experiment). These values increased during subsequent experiments demonstrating the effect of sediment accumulating inside the structures. Especially for coconut-fibre bales, this accumulation increases the risk of runoff bypassing or overtopping the barriers. The barriers mainly retained sand and, to a lesser extent, silt and clay. As vegetative barriers have to be renewed every few years because of the decomposition of organic material, barriers made of locally available materials are more sustainable as a nature-based solution to erosion. We conclude that although the vegetative barriers made of coconut-fibre bales are superior in their regulation of flows of runoff and sediment, barriers made of locally sourced materials are more sustainable. © 2021 John Wiley & Sons, Ltd

    Transport most likely to cause air pollution peak exposures in everyday life: Evidence from over 2000 days of personal monitoring

    Get PDF
    Background Air quality standards are typically based on long term averages – whereas a person may encounter exposure peaks throughout the day. Exposure peaks may contribute meaningfully to health impacts beyond their contribution to long term averages, and therefore should be considered alongside longer-term exposures. We aim to define and explain peak exposure to black carbon air pollution and look at the relationship between short peak exposures and longer term personal exposure. Methods A peak detection algorithm was applied to pooled data from two independent studies. High-resolution personal black carbon monitoring was performed in 175 healthy adult volunteers for a minimum of two 24-h periods per person. At the same time, we retrieved information on the time-activity pattern. Data covered Belgium, Spain, and the United Kingdom. In total, 2053 monitoring days were included. Results Exposure profiles revealed 2.8 ± 1.6 (avg ± SD) peaks per person per day. The average black carbon concentration during a peak was 4206 ng/m³. On 5.5% of the time participants were exposed to peak concentrations, but this contributed to 21.0% of their total exposure. The short time in transport (8%), was responsible for 32.7% of the peaks. 24.1% of the measurements in transport were categorized as peak exposure; while sleeping this was only 0.9%. When considering transport modes, participants were most likely to encounter peaks while cycling (34.0%). Most peaks were encountered at rush hour, from Monday through Friday, and in the cold season. Gender and age had no impact on the presence of peaks. Daily average black carbon exposure showed only a moderate correlation with peak frequency (r = 0.44). This correlation coefficient increased when considering longer term exposure to r > 0.60 from 10 days onward. Conclusions The occurrence of peaks varied substantially over time, across microenvironments and transport modes. Daily average exposure was moderately correlated with peak frequency. Real-time air pollution alerting systems may use the peak detection algorithm to support citizens in self-management of air pollution health effects

    Wearable sensors for personal monitoring and estimation of inhaled traffic-related air pollution: evaluation of methods

    Get PDF
    Physical activity and ventilation rates have an effect on an individual’s dose and may be important to consider in exposure–response relationships; however, these factors are often ignored in environmental epidemiology studies. The aim of this study was to evaluate methods of estimating the inhaled dose of air pollution and understand variability in the absence of a true gold standard metric. Five types of methods were identified: (1) methods using (physical) activity types, (2) methods based on energy expenditure, METs (metabolic equivalents of task), and oxygen consumption, (3) methods based on heart rate or (4) breathing rate, and (5) methods that combine heart and breathing rate. Methods were compared using a real-life data set of 122 adults who wore devices to track movement, black carbon air pollution, and physiological health markers for 3 weeks in three European cities. Different methods for estimating minute ventilation performed well in relative terms with high correlations among different methods, but in absolute terms, ignoring increased ventilation during day-to-day activities could lead to an underestimation of the daily dose by a factor of 0.08–1.78. There is no single best method, and a multitude of methods are currently being used to approximate the dose. The choice of a suitable method for determining the dose in future studies will depend on both the size and the objectives of the study
    • …
    corecore