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Abstract 25 

 26 

Background: Air quality standards are typically based on long term averages – whereas a 27 

person may encounter exposure peaks throughout the day. Exposure peaks may contribute 28 

meaningfully to health impacts beyond their contribution to long term averages, and therefore 29 

should be considered alongside longer-term exposures. We aim to define and explain peak 30 

exposure to black carbon air pollution and look at the relationship between short peak 31 

exposures and longer term personal exposure. 32 

Methods: A peak detection algorithm was applied to pooled data from two independent 33 

studies. High-resolution personal black carbon monitoring was performed in 175 healthy adult 34 

volunteers for a minimum of two 24-hour periods per person. At the same time, we retrieved 35 

information on the time-activity pattern. Data covered Belgium, Spain, and the United 36 

Kingdom. In total, 2053 monitoring days were included. 37 

Results: Exposure profiles revealed 2.8 ± 1.6 (avg ± SD) peaks per person per day. The average 38 

black carbon concentration during a peak was 4206 ng/m³. On 5.5% of the time participants 39 

were exposed to peak concentrations, but this contributed to 21.0% of their total exposure. 40 

The short time in transport (8%), was responsible for 32.7% of the peaks. 24.1% of the 41 

measurements in transport were categorized as peak exposure; while sleeping this was only 42 

0.9%. When considering transport modes, participants were most likely to encounter peaks 43 

while cycling (34.0%). Most peaks were encountered at rush hour, from Monday through 44 

Friday, and in the cold season. Gender and age had no impact on the presence of peaks. Daily 45 

average black carbon exposure showed only a moderate correlation with peak frequency 46 

(r=0.44). This correlation coefficient increased when considering longer term exposure to 47 

r>0.60 from 10 days onward. 48 

Conclusions: The occurrence of peaks varied substantially over time, across 49 

microenvironments and transport modes. Daily average exposure was moderately correlated 50 

with peak frequency. Real-time air pollution alerting systems may use the peak detection 51 

algorithm to support citizens in self-management of air pollution health effects. 52 

  53 
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1. Introduction 54 

Traffic emissions are an important source of air pollution in cities. Short-term and long-term 55 

exposure to traffic-related air pollution have been associated repeatedly to a number of health 56 

outcomes in epidemiological studies (HEI, 2010). There is also toxicological evidence that acute 57 

exposure events, or peaks, have different and independent health effects compared to longer-58 

term exposure averages (Smith, 2001; Zhou et al., 2017). Peak exposures may provoke 59 

immediate physiological changes, trigger a next stage in the development of a disease or even 60 

trigger myocardial infarction or death (Chen et al., 2017; Knibbs and Morawska, 2012; Lanki et 61 

al., 2006; Madsen et al., 2012; Nawrot et al., 2011; Peters et al., 2004; Rappaport, 1991). In 62 

addition, acute effects can cause discomfort (e.g. wheezing or dyspnea) resulting in temporary 63 

disability (Tian et al., 2017; Wegman et al., 1992). Repeated peak exposures may also 64 

contribute disproportionally to longer-term outcomes, due to either non-linear exposure 65 

response functions, or because repeated acute impacts overload protective or repair 66 

mechanisms (Knibbs and Morawska, 2012; Michaels and Kleinman, 2000; Zhou et al., 2017). As 67 

a consequence, people receiving a similar dose of pollution (either with or without peaks) 68 

could experience a different impact on their body. 69 

Until now, epidemiological and especially occupational studies have assumed that (1) longer 70 

term averages is what matters most for chronic impacts, and (2) longer term averages and 71 

(repeated) peak exposures are sufficiently correlated. This would mean that a person 72 

experiencing many spikes in their exposure profile, would also be exposed to elevated average 73 

exposures over the same time interval. It is an open question whether this association holds in 74 

the context of 24-hour continuous exposure while performing routine activities, with changing 75 

background concentrations and quickly changing exposures when switching 76 

microenvironments.  77 

 78 

Peak exposure is a widely-used term to indicate increased exposure, and although intuitively 79 

clear, there is no fixed definition (Smith, 2001). A peak or spike could be defined as at least one 80 

time window of predefined length with an average exposure above a predefined threshold. 81 

Nieuwenhuijsen et al. (1996) defined a peak as a relatively short term period of which its 82 

exposure level is considerably higher than the exposure level of a long term period within 83 

which it occurs. Different parameters can be defined when looking at peak exposures, of which 84 

magnitude, frequency, and rate of increase seem to be the most relevant when considering 85 

health outcomes. A threshold can be operationally defined as concentrations higher than the 86 

90th or 95th percentile over a fixed period (Jeong and Park, 2018; Maciejewska et al., 2015; 87 
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Peters et al., 2014), or concentrations that deviate at least 50% or x standard deviations from 88 

an otherwise steady state concentration (Michaels and Kleinman, 2000). Alternatively, a 89 

threshold can be defined as a concentration below which no detectable physiologic response 90 

occurs (Preller et al., 2004; Wegman et al., 1992). Peaks have variable lengths with no agreed 91 

pre-defined durations; and the ability to detect a peak is often limited by the low time 92 

resolution of air pollution measurements. Frequency can be expressed as the absolute number 93 

of peaks per sample, but because sampling durations may vary, the number of peaks per hour 94 

or per day can be used instead as a normalized index (Preller et al., 2004). Finally, the rate of 95 

increase needs to be sufficiently rapid (i.e. sharp increase of exposure over a short timespan) 96 

to evoke a physiologic response: acute effects are likely to be dependent upon the rate at 97 

which the agent accumulates in the target organ (Wegman et al., 1992). 98 

 99 

Mobile air pollution sensors enable us to measure personal exposure with a high temporal 100 

resolution, and to assess both peak and average exposure. Black carbon (BC; a component of 101 

fine particulate matter) is a pollutant that is often used as a good measure of traffic-related air 102 

pollution, and a portable device is available to measure time-integrated BC concentrations. 103 

According to the World Health Organization (Janssen et al., 2012), epidemiological studies 104 

provide sufficient evidence of an association of daily variations in BC concentrations with 105 

short-term changes in health, and there is evidence of associations of all-cause and 106 

cardiopulmonary mortality with long-term average BC exposure. In a large dataset of over 107 

2000 days of personal monitoring of BC in three European countries, we aim to define and 108 

describe average and peak exposures; we study the role of personal characteristics, including 109 

time-activity and travel patterns, in explaining exposures to peaks; and we associate average 110 

exposure to the frequency of peaks. 111 

  112 
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2. Materials and Methods 113 

2.1 Study design 114 

To get a sufficiently large and diverse sample, we combined data from two studies with a 115 

similar study design (Table 1). In brief, the studies performed 24-hour personal monitoring of 116 

BC air pollution at a high temporal resolution, and also included some measure of the time-117 

activity pattern either through a time-activity diary or through an activity tracker. The 118 

measurements were performed between 2010 and 2016. The first study was in a convenience 119 

sample of 27 couples living in Belgium (Dons et al., 2012); the second study included a total of 120 

121 healthy adults living in Antwerp (Belgium), Barcelona (Spain), or London (UK), 121 

opportunistically recruited through the PASTA project (Dons et al., 2017; Gaupp-Berghausen et 122 

al., 2019; Laeremans et al., 2018). Professional drivers and people with high occupational 123 

exposures to BC were excluded from participation at recruitment. The pooled dataset 124 

consisted of 175 unique participants, and 2053 days with at least 90% of data available. 125 

Participants were mostly Caucasian and highly-educated. 126 

Both studies measured personal exposure to BC using the microAeth type AE51 (AethLabs, San 127 

Francisco, CA, USA). This real-time pocket size instrument analyses BC by measuring the rate of 128 

change in absorption at 880 nm of transmitted light on a filter strip. The time resolution was 129 

set at 5 minutes; this is an integrated measurement that estimates the accumulation of black 130 

carbon particles during the previous 5 minutes. The flow was set at 100 ml/min. BC 131 

measurement data was treated similarly in both studies by starting from the raw data files. 132 

The Optimized Noise-reduction Averaging (ONA) algorithm was applied to reduce noise in the 133 

data and remove erroneously high or low values (Hagler et al., 2011). This smoothing process 134 

caused some 5-minute observations to be averaged over longer time periods: in the first 135 

dataset 67% of the 5-minute measurements were kept, 19% was averaged over 10 minutes, 136 

and 5% over 15 minutes; in the second dataset this was 59%, 20% and 8% respectively. A small 137 

minority of observations were averaged over longer time periods. Additionally, measurements 138 

that generated a filter saturation or flow error were removed, as well as BC values below -139 

50,000 ng/m³ or above 250,000 ng/m³ that sporadically remained after the ONA algorithm was 140 

applied (0.01% of the cases). To assure data integrity, parallel measurements with all devices 141 

were performed prior and post to each study, including also a prior flow calibration (Dons et 142 

al., 2012).  143 

The first study used an electronic diary for participants to report their activities and trips on a 144 

5-minute time resolution. The other study used the SenseWear (BodyMedia, USA) armband 145 

that automatically classified activities based on the internal accelerometer and propriety 146 
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algorithms. An aggregated classification was decided on for the analysis including three activity 147 

types (sleeping, daily activities, transport) and three transport modes (walking, cycling, car or 148 

public transport). 149 

 150 

2.2 Peak detection algorithm 151 

BC peaks were signalled in the pooled dataset using a peak detection algorithm (van Brakel, 152 

2014). The algorithm was initially developed for detecting sudden peaks in real-time timeseries 153 

data. The algorithm is suited for data with basic noise around a stationary mean, and with 154 

occasional peaks that deviate significantly from the noise, however, the width or height of the 155 

peaks is not pre-defined. 156 

The algorithm starts by calculating a moving mean for BC beginning at midnight (Figure 1). If 157 

the next observation is x standard deviations away from the moving mean, the algorithm sets 158 

this observation as a peak. A peak can be given a weight below one in the moving window to 159 

limit the impact of peak events on the mean. 160 

By changing the parameters (time window, threshold, weight), the algorithm can be made 161 

more or less sensitive to peaks. A two-hour time window was chosen to set a stable baseline 162 

during night-time hours: we assumed this value to be representative of background air 163 

pollution, and a somewhat longer time window should limit the impact of short exposure 164 

peaks during the day. We favored a higher threshold, in this case 3.5 times the standard 165 

deviation, as we believe the rate of increase needed to be sufficiently rapid to be biologically 166 

relevant. Finally, a weight of 0.1 was applied as we acknowledge that the stationary mean may 167 

change when changing microenvironments – we’re not interested in these changes in 168 

background concentrations, but rather in deviations from the new background. We 169 

additionally required peaks to have a minimum duration of 10 minutes (at least two separate 170 

observations with the 5-minute time resolution of the BC air pollution monitor), and a local BC 171 

maximum within a peak of at least 2500 ng/m³. The minimum duration of 10 minutes was 172 

introduced, firstly, to minimize the chance of detecting false peaks since a single reading may 173 

be impacted by mechanical shocks, or by rapid changes in humidity or temperature, and 174 

secondly, we hypothesize that the biological relevance increases. The value of 2500 ng/m³ is 175 

an equivalent of 10% of the 24-hour air quality guideline of the World Health Organization for 176 

PM2.5, knowing that about 10% of the PM2.5 fraction was identified as BC in urban 177 

environments in Europe (Maciejewska et al., 2015; Putaud et al., 2010; WHO, 2005). Sensitivity 178 

analyses were performed on the parameters (see below). 179 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

7 

 

Negative peaks, i.e. observations below -3.5 standard deviations, were not frequent (0.8 ± 1.0 180 

negative peaks per day) and were not treated as peaks further on in the analyses. Each 24-181 

hour period was analyzed separately and is referred to as a ‘person-day’. 182 

 183 

 184 

Figure 1: Illustration of the peak detection algorithm in one 24-hour timeseries (time window = 2 185 

hours; threshold = 3.5*SD; weight = 0.1). The timeseries presents personal monitoring of BC on May 186 

21, 2015 in Barcelona, Spain. In this 24-hour timeseries the algorithm detected two peaks (in red in 187 

the graph). The average BC concentration was 944 ± 1437 ng/m³. 188 

 189 

2.3 Data analysis 190 

We first described the combined dataset using descriptive statistics. Magnitude, duration and 191 

frequency of BC peaks, and the contribution of peaks to integrated daily exposure were 192 

calculated. The 5-minute measurements were summarized by several characteristics: activity 193 

type, transport mode, hour of the day, weekday, season, gender, age, and study area and 194 

dataset. We explored how those characteristics impacted peaks in the exposure profile. All 195 

potential variables that explained peaks were also entered in a mixed effects logistic 196 

regression model. We used a binary outcome variable: an observation was either a BC 197 

exposure peak or it was not. The person, and the dataset the observation belonged to, were 198 

included as random effects. All models were adjusted for activity type (sleeping / daily 199 

activities / transport), transport mode (walking / cycling / car or public transport), rush hour 200 

(yes / no), weekend (yes / no), season (spring / summer / fall / winter), and current age 201 

(continuous). 202 

Average and cumulative exposure was related to frequency of peaks and cumulative peak 203 

exposure (duration * BC concentration during the peaks) over time intervals of 24 hours with 204 

Pearson’s r. To check whether the correlation coefficient increases when including multiple 205 
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measurement days per person, BC exposures and number of peaks were averaged over 206 

multiple days per person, ranging from two days and up to 18 days, which is the maximum 207 

number of measurement days per person in our pooled sample. Additionally, we grouped 208 

person-days in four groups according to average BC exposure and number of peaks. Group 1 209 

was defined as having a higher than average BC exposure, and a higher than average number 210 

of peaks (high exposure-many peaks). Group 2 had a lower than average BC exposure, but a 211 

higher than average number of peaks (low exposure-many peaks). Group 3 had a low average 212 

BC exposure, and a low number of peaks (low exposure-few peaks); and group 4 was defined 213 

as having a higher than average BC exposure, and a low number of peaks (high exposure-few 214 

peaks). We investigated whether a person was likely to be in the same group on multiple days 215 

(Chi-squared test), and whether peaks were triggered by other factors in the different groups. 216 

As a test of sensitivity, it was checked whether using a simple, fixed threshold of 2500 ng/m³ 217 

(also with a minimum peak duration of 10 minutes) or changing the parameter values in the 218 

peak detection algorithm would change our findings. More robust measures of scale were 219 

tested as well: the moving average was replaced by the moving median, and the standard 220 

deviation was replaced by the median absolute deviation (MAD). 221 

Peak detection and all statistical analyses were performed in R statistical software. 222 

 223 
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Table 1: Summary of the datasets used for the detection of peak exposures. Data were pooled before analysis. 224 

 Dataset Reference Study description Person-days with 
at least 90% 
complete data 
(N=2053) 

Unique 
participants 
(N=175) 

Sex: Male 
(81 (46%)) 

Age (years) 
(36.2 (9.8)) 

Black carbon, 24-
hour personal 
exposure 
(1364 (738) 
ng/m³)) 

Couples in Belgium Dons et al., 2012 24h personal monitoring, 7 days continuously, 8 
participants participated in 2 seasons, other 
participants only in 1 season; participants living in 
the region Flanders (Belgium); AE-51 (Aethlabs, 
USA) for black carbon, electronic diary for time-
activity pattern; 2010-2011 

344 54 27 (50%) 38.8 (10.1) 1474 (686) 
ng/m³ 

Healthy adults in Europe 
(PASTA project) 

Dons et al., 2017; 
Laeremans et al., 
2018 
 

24h personal monitoring, 7 days continuously, 
repeated in 3 seasons; participants living in 
Antwerp (Belgium), Barcelona (Spain), London 
(UK); AE-51 (Aethlabs, USA) for black carbon, 
SenseWear (BodyMedia, USA) armband for 
physical activity and time-activity pattern; 2015-
2016 

1709 121 54 (45%) 35.6 (9.6) 1342 (746) 
ng/m³ 

Data are mean (SD) or N (%). 
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3. Results 225 

3.1 Description of the pooled sample 226 

The pooled sample consisted of 2053 person-days from 175 unique participants between 18 227 

and 62 years old. Each participant provided measurements during an average of 11.7 ± 4.7 228 

days. This number was higher in the PASTA sample (14.1 ± 3.0), and lower in the couples (6.4 ± 229 

2.8). The number of days per person ranged from 2 to 18. 230 

The 5-minute BC measurements (N=578,885) were lognormally distributed (median 854 [IQR 231 

464, 1513] ng/m³) (see supplemental information). This already indicated the presence of peak 232 

exposures. About 30% of all measurements were made while participants were sleeping, and 233 

the median BC concentration was lowest during this activity (Table 2). 8% of all observations 234 

were categorized as transport, of which 42% walking, 40% in cars or on public transport, and 235 

18% bicycling. The remaining fraction of time was spent doing daily activities (work, home 236 

duties, leisure, etc.). The 95th percentile concentration per activity was highest while in 237 

transport (8942 ng/m³) and lowest while sleeping (2574 ng/m³). The value of 2500 ng/m³ 238 

which we have chosen as the minimum height for peaks corresponds to the 89th percentile. 239 

 240 
Table 2: Black carbon concentration during different activities (N=578,885), and in different transport 241 

modes (N=43,517). Concentrations are in ng/m³. 242 

 Activity type Black carbon (avg ± SD) Black carbon (median [IQR])] Number of 5-minute observations 

Sleeping 982 ± 898 750 [414, 1268] 175,914 (30%) 
Daily activities 1394 ± 2734 874 [478, 1539] 359,454 (62%) 
In transport 2656 ± 4186 1390 [641, 3185] 43,517 (8%) 

On foot 2085 ± 3925 1121 [559, 2426] 18,413 (42%) 
Bike 2736 ± 3784 1733 [743, 3550] 7,708 (18%) 
Car, Public Transport 3226 ± 4530 1619 [739, 4011] 17,396 (40%) 

 243 

3.2 Peak exposure 244 

An average number of 2.8 ± 1.6 peaks per day were detected by the peak detection algorithm, 245 

with a maximum of 10 peaks on one day. The average BC concentration during peak exposure 246 

was 4206 ng/m³. By design no peaks could be encountered in the first two hours of the day, 247 

however we do not expect many peaks in this time window (0.2% and 0.5% of peaks occurred 248 

between 2-3 a.m. and 3-4 a.m., respectively). A peak lasted on average 27.5 ± 19.3 minutes. 249 

Peaks were present on 5.5% of the time on average, ranging from no peaks per day to peaks 250 

during 23.3% of the time. Although peaks were short and infrequent, BC exposure during 251 

peaks contributed to 21.0% of the total exposure during that day (range: 0.0% to 83.5%) (see 252 

supplemental information). 253 

 254 
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The short time in transport (8%), was responsible for 32.7% of the peaks; and almost a quarter 255 

(24.1%) of the observations in transport were categorized as peak exposure. This number was 256 

highest for bike trips (34.0%), slightly lower for trips by car or public transport (27.6%), and 257 

lowest for trips on foot (16.6%). Only 0.9% of the exposure while sleeping was peak exposure; 258 

during daily activities this was 5.6%. During traffic rush hour (7-10 am; 4-7 pm) 12.0% of all 259 

observations were categorized as a peak, outside traffic rush hour only 3.4% of the 260 

observations were categorized as peak exposure. When we only consider transport activities, 261 

35.3% of the observations in rush hour were categorized as a peak. Likewise, from Monday 262 

through Friday participants were more likely to encounter a peak than during the weekend 263 

(6.2% on a weekday; 4.1% in the weekend). The chance of encountering peaks differed by 264 

season with highest rates in fall, and lowest rates in summer (6.2% in fall; 5.4% in spring; 5.0% 265 

in summer; 5.5% in winter). In our sample, the number of peaks per person-day was not 266 

related to gender, and the effect of age was close to zero. Consistent results were seen by 267 

dataset and study area; with the exception of a lower occurrence of peaks while traveling in 268 

London (all travel modes). The number of peaks per person-day was slightly higher in Spain 269 

(Barcelona; 3.2 ± 1.6 peaks per day) compared to Belgium (region of Flanders and Antwerp; 2.7 270 

± 1.6) and the UK (London; 2.7 ± 1.7), the latter caused exclusively by the lower number of 271 

peaks while in transport. 272 

The findings from the mixed models that controlled for confounding variables were 273 

comparable to the results presented above from the descriptive analysis (see supplemental 274 

information). Age was found to be negatively related to the presence of peaks in the mixed 275 

model (p=0.045), but the effect was very small (estimate = -0.004378).  276 

 277 

Pearson’s r correlation coefficient between daily average BC exposure and the number of 278 

peaks during that same day was 0.44 (Figure 2). The association between cumulative daily 279 

exposure and cumulative peak exposure during that same day was 0.69. There was an increase 280 

in the correlation between average BC exposure and the number of peaks with an increasing 281 

number of measurement days per individual, i.e. not considering one person-day (24 hours), 282 

but up to 18 person-days (Figure 3). From 10 days onward, the correlation coefficient 283 

increased to values above 0.60. However, in longer intervals uncertainties were higher given 284 

the lower number of participants with this many measurement days. 285 

 286 
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 287 

Figure 2: Correlation plot of daily average black carbon exposure and the number of peaks 288 

encountered (panel (a)). The horizontal and vertical red lines on the correlation plot represent the 289 

average value that splits the groups (G1 to G4). Four daily timeseries are shown as examples from 290 

each group (panels (b) – (e)). The red lines and dots on the timeseries plot indicate the peaks as 291 

identified by the algorithm. 292 

 293 
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 294 

Figure 3: Pearson’s correlation between average BC exposure and the average number of peaks per 295 

day, in individuals with up to 18 measurement days (only the first x days per person are considered). 296 

The N indicates the number of individuals included in each analysis. 297 

 298 

We grouped person-days in four groups according to low or high average daily exposure, and a 299 

low or high number of peaks on the same day (Figure 2). As expected, group 1 (high exposure-300 

many peaks) and group 3 (low exposure-few peaks) had the highest number of person-days, 301 

respectively 638 and 692. The lowest number of person-days were present in group 4 (high 302 

exposure-few peaks): 216. The distribution of the 5-minute observations was highly similar in 303 

groups 2 & 3 (low exposure-many peaks and low exposure-few peaks), and in groups 1 & 4 304 

(high exposure-many peaks and high exposure-few peaks). There was an association between 305 

group and person: a person was more likely to be in the same group over several 306 

measurement days. When stratifying the mixed model by group, the determinants of peaks 307 

appeared to be similar in the four groups (see supplemental information).  308 

 309 

3.3 Sensitivity analysis 310 

Changing the parameter values of the peak detection algorithm impacted the results in the 311 

expected direction (see supplemental information: Table S2-S4). Lowering the threshold to 1.5 312 

standard deviations increased the frequency (3.7 ± 2.3 peaks per day) and the duration (44.9 313 

minutes) of peaks. When setting the influence parameter to 1, i.e. a peak is given a weight of 1 314 

in the moving mean, the frequency (1.8 ± 1.2 peaks per day) and duration (14.1 minutes) of 315 

peaks decreased. Shortening the lag to 1 hour or 30 minutes, increased the number of peaks 316 
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but it had nearly no impact on the average duration of peaks. Changing the parameters did not 317 

meaningfully impact the correlation between daily average BC exposure and peak frequency. 318 

By using the median instead of the mean, and the median absolute deviation (MAD) instead of 319 

the standard deviation, the peak detection algorithm became less restrictive. The new 320 

definition resulted in an average number of 3.0 ± 1.7 peaks per day, and peaks lasted longer to 321 

an average of 38.7 minutes. The correlation coefficient between daily average BC exposure 322 

and the number of peaks during that same day became 0.48. Only minor differences were 323 

observed in the mixed model results. So, although the model was more sensitive to peaks with 324 

the new definition, the general trends and conclusions did not change. 325 

Using a fixed threshold of 2500 ng/m³ to define a peak, resulted in a higher peak frequency 326 

compared to the proposed peak detection algorithm: 3.5 ± 2.5 peaks per day instead of 2.8 ± 327 

1.6 peaks per day. The number of peaks per day ranged from 0 to 16. The average duration of 328 

a peak was remarkably longer compared to the proposed peak detection algorithm (42.5 ± 329 

72.1 minutes versus 27.5 ± 19.3 minutes), with a maximum duration of 905 minutes for one 330 

peak. The Pearson’s r correlation coefficient between daily average BC exposure and the 331 

number of peaks during that same day was 0.59 when we used the fixed threshold of 2500 332 

ng/m³ to define peaks. 333 

  334 
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4. Discussion 335 

In a large multicenter pooled dataset, we applied a peak detection algorithm to study 336 

determinants of BC peak exposure and we investigated the association between average and 337 

peak exposure over time. The occurrence of peaks varied substantially across different 338 

microenvironments and transport modes. Hour of the day, day of the week, and season were 339 

also associated to the presence of peaks. Results were similar in separate datasets. Although 340 

peaks were short in duration, our study showed that they made up an important part of daily 341 

exposure to BC. However, when we considered a 24-hour exposure interval, average BC 342 

exposure and the number of peaks showed only a moderate correlation; in longer time 343 

intervals (up to 18 days) the correlation coefficient increased. 344 

 345 

Previous studies already revealed that daily timeseries of personal monitoring of traffic-related 346 

air pollution closely relate to the time-activity pattern of a person (Carvalho et al., 2018; Dons 347 

et al., 2011; Koehler et al., 2019; Rivas et al., 2016). A typical exposure pattern of a full-time 348 

office worker follows a two-peak pattern: relatively constant concentrations at night, at work, 349 

and at home, and two peaks while commuting to and from work. This pattern finds 350 

concentrations to be lognormally distributed with a long tail on the right, and by definition this 351 

already indicates the presence of peaks (Jeong and Park, 2018). Also, other crude measures as 352 

the standard deviation, ratio of mean and median, or the height of the 95th percentile may be 353 

indicators of whether and how many peaks are to be expected. But a typical pattern for a full-354 

time worker may not be representative for all situations. Firstly, on non-workdays people have 355 

a different time-activity pattern resulting in a different exposure pattern. Secondly, rapidly 356 

changing background concentrations for example due to changes in meteorology may lead to 357 

changes in exposure independent of the time-activity pattern. And thirdly, some traffic-related 358 

air pollutants may have non-traffic sources as well, for example BC from cooking or 359 

charbroiling meat (Jeong and Park, 2018; Van Vliet et al., 2013), which will disturb the typical 360 

two-peak pattern. In our pooled sample, 2053 unique daily exposure patterns partly 361 

representative for the adult population in Europe were analyzed and revealed an average of 362 

2.8 BC peaks per day, and at least part of these peaks could be attributed to time spent in 363 

traffic. 364 

About a quarter of the observations in transport were categorized as peak exposure. Most 365 

peaks were encountered while cycling, which is in line with findings from Jeong and Park 366 

(2018) who also found more BC peaks during active travel compared to traveling by motorized 367 

modes. Abraham et al. (2014) found a higher occurrence of peak exposure to BC during 368 
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walking compared to traveling by bus or on the underground. Bauer et al. (2018) stated that 369 

seating location on the bus determined the number of BC peaks. Unfortunately, in our study, 370 

because of the inability of the SenseWear armband to discriminate between private and public 371 

motorized transport, we could not study peaks in cars and in different types of public transport 372 

separately. In a spatial analysis of peak BC exposure while cycling, it was found that peaks were 373 

present at (major) intersections, along routes with a high share of heavy duty vehicles, and in a 374 

tunnel (Peters et al., 2014). In our study, we found lower concentrations and a lower number 375 

of peaks in the transport microenvironment in London. This may be explained by the high 376 

number of underground users in London (microAeth may report BC wrongly because of the 377 

presence of iron in the underground, however we would expect an overestimation rather than 378 

an underestimation), differences in vehicle fleets or fuels (lower share of diesel passenger cars 379 

in the UK; share of diesel cars in the total passenger car fleet in 2016: Belgium 60%, Spain 57%, 380 

UK 38.7% (EEA, 2018)), or differences in infrastructure and urban design (de Nazelle et al., 381 

2017; Hankey and Marshall, 2015). There was no proof of other differences in peak exposure 382 

between cities and countries. The frequency of peaks was lower in the warmer season: 383 

background concentrations were lower and potential peaks did not surpass the threshold of 384 

2500 ng/m³, additionally seasonal variation in the time-activity pattern may have caused a 385 

lower occurrence of peaks in the warmer season. The same reasoning explains why there are 386 

more peaks on traffic rush hours, and from Monday to Friday. 387 

We found a moderate association (r=0.44) between daily average BC exposure and the daily 388 

number of BC peaks, contradicting the hypothesis that the number of peaks and personal 389 

exposure are highly correlated and can be used interchangeably. In a sensitivity analysis, we 390 

did observe a higher correlation of 0.59 when applying a fixed threshold of 2500 ng/m³ to 391 

define peaks. Epidemiological studies, such as panel studies looking at short term exposure of 392 

up to a week, should be aware of the moderate association. In contrast, cohort studies 393 

interested in long term exposure, could assume that the number of peaks and longer-term 394 

personal exposure are sufficiently correlated, as indicated in our study by an increase in the 395 

correlation coefficient when averaging over longer time periods of up to 18 days.  396 

Participants were more likely to be in the same of four groups (grouping determined by 397 

average exposure and peak frequency) on multiple days. A similar peak frequency could be 398 

explained by participants performing routine activities resulting in similar exposure profiles. 399 

Because at least part of the measurement days was on consecutive days with likely similar 400 

background concentrations, this resulted in similar average exposures. Within the groups, 401 

peaks could be explained by the same factors, as shown in the stratified mixed models.  402 
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 403 

Limitations of our study include (1) differences in activity reporting between the two studies 404 

(electronic diary vs. activity tracker); (2) the 5-minute time resolution of the microAeth for BC 405 

monitoring; (3) limited generalizability with only data from adults. Activity reporting with 406 

diaries used to be a labor-intensive task for participants, but more recently activity trackers 407 

such as the SenseWear armband appeared as an alternative requiring minimal intervention 408 

from the participant. Unfortunately, both methods have their deficiencies. Self-reporting tools 409 

are prone to recall bias, social desirability bias and fatigue effects, and personal characteristics 410 

may influence reporting behavior (Breen et al., 2014). Activity trackers in general, and the 411 

SenseWear armband in particular, struggle with activity and transport mode classification. It 412 

has been reported that the SenseWear is not as precise in estimating physical activity duration 413 

and energy expenditure (SenseWear overestimates) in comparison with a questionnaire and a 414 

gold standard method respectively (Laeremans et al., 2017; Santos-Lozano et al., 2017). The 415 

difference in activity reporting most probably reduces precision of our results, however, an 416 

analysis by dataset did show very similar time-activity patterns pointing to small 417 

misclassification errors only. No direct comparison of the electronic diary and the activity 418 

tracker (SenseWear) could be made. Secondly, the time-resolution of 5 minutes prevented us 419 

from detecting very short transient peaks in the order of magnitude of seconds (like passing 420 

vehicles); though these very short peaks were included in the 5-minute averages. This has no 421 

impact on our analysis, but it would complicate a spatial analysis of BC hot spots (locations 422 

with frequent air pollution peaks). The time resolution was chosen because of practical 423 

reasons of internal memory capacity and battery lifetime. Thirdly, both studies included in the 424 

pooled sample were on adults only. Children are more susceptible to the health effects of air 425 

pollution, and they may have a deviating BC exposure profile because of their different time-426 

activity schedule. However, for adults, we believe we covered a good portion of the variability 427 

by including >2000 person-days of adults living in multiple European countries. 428 

 429 

Mobile air pollution sensors enabled us to measure 24-hour time-integrated personal 430 

exposure, and to assess both peaks and average exposure. This is the first study, to the best of 431 

our knowledge, to analyze peak exposure to air pollution on such a scale in volunteers 432 

performing their routine activities. Previous research on peak exposure tended to focus on 433 

occupational settings only, leading to regulations for many chemicals by setting ceiling limits or 434 

short-term exposure limits (Smith, 2001). The ability to delineate peaks in everyday life 435 

through space and time allows for correlation of exposure with specific activities, specific 436 
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microenvironments, or geographic locations (Adams et al., 2009). This could help the design of 437 

effective and targeted interventions and policies to reduce average and peak exposure. 438 

Further research into the health effects of (repeated) peak exposures is needed, but if it is the 439 

upper tail of the exposure distribution that determines the risk, it would be good policy to try 440 

to limit the frequency of peaks, rather than only trying to reduce average concentrations 441 

(Paoletti et al., 2014). In a study in Slovenia measuring BC in cyclists, the authors found that an 442 

alternative and cleaner route led to lower average exposures, but that very short peak 443 

exposures, mainly near intersections, were not affected (Jereb et al., 2018). 444 

 445 

We propose a generic method to detect peaks in air pollution personal monitoring that on the 446 

one hand handles the fact that exposure is inherently variable but that a sufficiently high dose 447 

rate is needed to experience acute changes in the body, and on the other hand can deal with 448 

peaks of different length and height. For sustained peaks, the algorithm may underestimate 449 

the duration of peaks due to the increasing standard deviation. This may also affect the 450 

average magnitude of a peak, and the contribution of peak exposures to cumulative exposure. 451 

However, with the algorithm we prioritised the estimation of peak frequency and rate of 452 

increase, as we believe these variables are most relevant for health. A fixed threshold, for 453 

example of 2500 ng/m³ as tested in the sensitivity analysis, could be useful to study the 454 

duration of exposure at high concentrations, but is not very well suited for the detection of 455 

events with a high rate of increase of concentrations. On days with high background 456 

concentrations this resulted in large parts of the day being labelled as a peak, but excursions 457 

above the threshold were not separately marked. The algorithm could be linked to an 458 

application that informs participants in real-time about peaks and serve as a warning/alerting 459 

system. Moore and colleagues already applied the algorithm described in our paper to detect 460 

indoor air pollution peaks in real-time, in combination with ecological momentary assessment 461 

through text messaging (Moore et al., 2018). Air pollution alerts could convince the carrier of 462 

the device to adapt his or her behaviour, and improve self-management, for example through 463 

reducing vigorous outdoor activities or cycling, avoiding air pollution hot spots, reducing 464 

automobile use, or altering medication levels (Kelly et al., 2012; Saberian et al., 2017; Ward 465 

and Beatty, 2016). Promoting the use of an app or a personal monitor with air pollution alerts 466 

should always be combined with emission reduction policies to also protect vulnerable 467 

individuals with no access to this technology. 468 

 469 
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In conclusion, air pollution peak exposures are omnipresent in everyday life with 2.8 peaks per 470 

person per day on average. When moving around in a city, one out of four measurements was 471 

identified as a concentration peak. Until now the independent impact of repeated peak 472 

exposures was not studied, with the main motivation being that the number of peaks and 473 

average exposure are highly correlated. In our research we found that this is not always true. 474 

In the future, we will link the occurrence of peaks to several cardiovascular markers to test for 475 

differences in biological responses to BC pollution from time-varying exposures (with peaks) 476 

versus time-invariant exposures. This will help us in gaining a better understanding of the 477 

health relevance of repeated peak exposures. 478 

 479 
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- Over 2000 days of personal monitoring of black carbon with the microAeth AE51 

- Exposure profiles revealed 2.8 peaks per person per day using our peak detection algorithm 

- Peaks contributed to 21% of total daily exposure to black carbon 

- Participants most likely to encounter peaks while being in transport, and specifically bicycling 

- Peak frequency and average exposure were only moderately correlated in a 24-h period 
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