536 research outputs found

    Polarimetry and photometry of the peculiar main-belt object 7968 = 133P/Elst-Pizarro

    Full text link
    133P/Elst-Pizarro is an object that has been described as either an active asteroid or a cometary object in the main asteroid belt. Here we present a photometric and polarimetric study of this object in an attempt to infer additional information about its origin. With the FORS1 instrument of the ESO VLT, we have performed during the 2007 apparition of 133P/Elst-Pizarro quasi-simultaneous photometry and polarimetry of its nucleus at nine epochs in the phase angle range 0 - 20 deg. For each observing epoch, we also combined all available frames to obtain a deep image of the object, to seek signatures of weak cometary activity. Polarimetric data were analysed by means of a novel physical interference modelling. The object brightness was found to be highly variable over timescales <1h, a result fully consistent with previous studies. Using the albedo-polarization relationships for asteroids and our photometric results, we found for our target an albedo of about 0.06-0.07 and a mean radius of about 1.6 km. Throughout the observing epochs, our deep imaging of the comet detects a tail and an anti-tail. Their temporal variations are consistent with an activity profile starting around mid May 2007 of minimum duration of four months. Our images show marginal evidence of a coma around the nucleus. The overall light scattering behaviour (photometry and polarimetry) resembles most closely that of F-type asteroids.Comment: Accepted by Astronomy and Astrophysic

    Comet P/Tempel: Some highlights and conclusions from the 1988 apparition

    Get PDF
    From the brightness development and a sequence of imaging observations of the coma activity onset of comet P/Tempel 2 in 1988, it is concluded that there might have happened eruptive events of strong dust and gas outbursts during May and June 1988. A comparison of dust coma modeling calculations with CCD observations of the coma widely confirms Sekanina's nucleus model for the comet

    The role of organic polymers in the structure of cometary dust

    Get PDF
    Several phenomena observed in P/Halley and other comets indicate additional fragmentation of dust particles or dust aggregates in cometary atmospheres. The disintegration of dust aggregates may be explained by sublimation of polymerized formaldehyde - POM - which play a role as binding material between submicron individual particles

    Coma imaging of comet P/Brorsen-Metcalf at Calar Alto in late July to mid August 1989

    Get PDF
    Comet P/Brorsen-Metcalf was observed on 1989/07/28+30 and on 1989/08/04+12(+14) with the 3.5 m telescope and the 0.8 m Schmidt camera at Calar Alto/Spain. The images exhibit a narrow plasma tail pointing into anti-solar direction. On 1989/07/30 a triple tail was found which can be interpreted as tail ray event. The coma isophotes show prominent asymmetries with the nucleus located on the tailward side of the isophote foci and with a slightly higher brightness in the Northern Hemisphere of the coma. A strong curved jet feature was detected in the coma on 1989/07/30. The jet extended at least 30,000 km into the sunward coma hemisphere. The rotation period of about 1.3 days, estimated from the curvature of the coma jet, needs verification by other observations

    Photometry and polarimetry of the nucleus of comet 2P/Encke

    Full text link
    Broadband imaging photometry, and broadband and narrowband linear polarimetry was measured for the nucleus of 2P/Encke over the phase-angle range 4 - 28 deg. An analysis of the point spread function of the comet reveals only weak coma activity, corresponding to a dust production of the order of 0.05 kg/s. The nucleus displays a color independent photometric phase function of almost linear slope. The absolute R filter magnitude at zero phase angle is 15.05 +/- 0.05, and corresponds to an equivalent radius for the nucleus of 2.43 +/- 0.06 km (for an adopted albedo of 0.047). The nucleus color V - R is 0.47 +/- 0.07, suggesting a spectral slope of 11 +/- 8 %/100nm. The phase function of linear polarimetry in the V and R filters shows a widely color independent linear increase with phase angle (0.12 +/- 0.02%/deg). We find discrepancies in the photometric and polarimetric parameters between 2P/Encke and other minor bodies in the solar system, which may indicate significant differences in the surface material properties and light-scattering behavior of the bodies. The linear polarimetric phase function of 2P/Encke presented here is the first ever measured for a cometary nucleus, and its analysis encourages future studies of cometary nuclei in order to characterize the light-scattering behavior of comets on firm empirical grounds and provide suitable input to a comprehensive modeling of the light scattering by cometary surfaces.Comment: Accepted by A&

    Thermal Infrared and Optical Photometry of Asteroidal Comet C/2002 CE10_{10}

    Full text link
    C/2002 CE10_{10} is an object in a retrograde elliptical orbit with Tisserand parameter 0.853-0.853 indicating a likely origin in the Oort Cloud. It appears to be a rather inactive comet since no coma and only a very weak tail was detected during the past perihelion passage. We present multi-color optical photometry, lightcurve and thermal mid-IR observations of the asteroidal comet. \textcolor{blue}{ With the photometric analysis in BVRIBVRI, the surface color is found to be redder than asteroids, corresponding to cometary nuclei and TNOs/Centaurs. The time-resolved differential photometry supports a rotation period of 8.19±\pm0.05 h. The effective diameter and the geometric albedo are 17.9±\pm0.9 km and 0.03±\pm0.01, respectively, indicating a very dark reflectance of the surface. The dark and redder surface color of C/2002 CE10_{10} may be attribute to devolatilized material by surface aging suffered from the irradiation by cosmic rays or from impact by dust particles in the Oort Cloud. Alternatively, C/2002 CE10_{10} was formed of very dark refractory material originally like a rocky planetesimal. In both cases, this object lacks ices (on the surface at least). The dynamical and known physical characteristics of C/2002 CE10_{10} are best compatible with those of the Damocloids population in the Solar System, that appear to be exhaust cometary nucleus in Halley-type orbits. The study of physical properties of rocky Oort cloud objects may give us a key for the formation of the Oort cloud and the solar system.Comment: 9 pages, 4 figures accepted to Icaru

    Comet 17P/Holmes in Outburst: The Near Infrared Spectrum

    Full text link
    Jupiter family comet 17P/Holmes underwent a remarkable outburst on UT 2007 Oct. 24, in which the integrated brightness abruptly increased by about a factor of a million.We obtained near infrared (0.8 - 4.2 micron) spectra of 17P/Holmes on UT 2007 Oct. 27, 28 and 31, using the 3.0-m NASA Infrared Telescope Facility (IRTF) atop Mauna Kea. Two broad absorption bands were found in the reflectance spectra with centers (at 2 micron and 3 micron, respectively) and overall shapes consistent with the presence of water ice grains in the coma. Synthetic mixing models of these bands suggest an origin in cold ice grains of micron size. Curiously, though, the expected 1.5 micron band of water ice was not detected in our data, an observation for which we have no explanation. Simultaneously, excess thermal emission in the spectra at wavelengths beyond 3.2 micron has a color temperature of 360 +/- 40 K (corresponding to a superheat factor of ~ 2.0 +/- 0.2 at 2.45 AU). This is too hot for these grains to be icy. The detection of both water ice spectral features and short-wavelength thermal emission suggests that the coma of 17P/Holmes has two components (hot, refractory dust and cold ice grains) which are not in thermal contact. A similarity to grains ejected into the coma of 9P/Tempel 1 by the Deep Impact spacecraft is noted.Comment: 27 pages, 11 figures, accepted for publication in A

    Spitzer Observations of Comet 67P/Churyumov-Gerasimenko at 5.5-4.3 AU From the Sun

    Get PDF
    We report Spitzer Space Telescope observations of comet 67P/Churyumov-Gerasimenko at 5.5 and 4.3 AU from the Sun, post-aphelion. Comet 67P is the primary target of the European Space Agency's Rosetta mission. The Rosetta spacecraft will rendezvous with the nucleus at heliocentric distances similar to our observations. Rotationally resolved observations at 8 and 24 microns (at a heliocentric distance, rh, of 4.8 AU) that sample the size and color-temperature of the nucleus are combined with aphelion R-band light curves observed at the Very Large Telescope (VLT) and yield a mean effective radius of 2.04 +/- 0.11 km, and an R-band geometric albedo of 0.054 +/- 0.006. The amplitudes of the R-band and mid-infrared light curves agree, which suggests that the variability is dominated by the shape of the nucleus. We also detect the dust trail of the comet at 4.8 and 5.5 AU, constrain the grain sizes to be less than or similar to 6 mm, and estimate the impact hazard to Rosetta. We find no evidence for recently ejected dust in our images. If the activity of 67P is consistent from orbit to orbit, then we may expect the Rosetta spacecraft will return images of an inactive or weakly active nucleus as it rendezvous with the comet at rh = 4 AU in 2014.Comment: 19 pages, 2 tables, 10 figures. Accepted for publication in the Astronomical Journa

    Imaging the Dust Trail and Neckline of 67P/Churyumov-Gerasimenko

    Full text link
    We report on the results of nearly 10 hours of integration of the dust trail and neckline of comet 67P/Churyumov-Gerasimenko (67P henceforth) using the Wide Field Imager at the ESO/MPG 2.2m telescope in La Silla. The data was obtained in April 2004 when the comet was at a heliocentric distance of 4.7 AU outbound. 67P is the target of the Rosetta spacecraft of the European Space Agency. Studying the trail and neckline can contribute to the quantification of mm-sized dust grains released by the comet. We describe the data reduction and derive lower limits for the surface brightness. In the processed image, the angular separation of trail and neckline is resolved. We do not detect a coma of small, recently emitted grains.Comment: 4 pages, 3 figures, to be published in the proceedings book of the conference "Dust in Planetary Systems 2005", Calibration updated in Section

    Reopening the TNOs Color Controversy: Centaurs Bimodality and TNOs Unimodality

    Full text link
    We revisit the Trans-Neptunian Objects (TNOs) color controversy allegedly solved by Tegler and Romanishin 2003. We debate the statistical approach of the quoted work and discuss why it can not draw the claimed conclusions, and reanalyze their data sample with a more adequate statistical test. We find evidence for the existence of two color groups among the Centaurs. Therefore, mixing both centaurs and TNOs populations lead to the erroneous conclusion of a global bimodality, while there is no evidence for two color groups in the TNOs population alone. We use quasi-simultaneous visible color measurements published for 20 centaurs (corresponding to about half of the identified objects of this class), and conclude on the existence of two groups. With the surface evolution model of Delsanti et al. (2003) we discuss how the existence of two groups of Centaurs may be compatible with a continuous TNOs color distribution.Comment: 4 pages, 4 figures, accepted for publication in Astronomy and Astrophysics Letter
    corecore