138 research outputs found

    The global impact of tobacco control policies on smokeless tobacco use: a systematic review

    Get PDF
    BACKGROUND: Smokeless tobacco, used by more than 300 million people globally, results in substantial morbidity and mortality. For smokeless tobacco control, many countries have adopted policies beyond the WHO Framework Convention on Tobacco Control, which has been instrumental in reducing smoking prevalence. The impact of these policies (within and outside the Framework Convention on Tobacco Control) on smokeless tobacco use remains unclear. We aimed to systematically review policies that are relevant to smokeless tobacco and its context and investigate their impact on smokeless tobacco use. METHODS: In this systematic review, we searched 11 electronic databases and grey literature between Jan 1, 2005, and Sept 20, 2021, in English and key south Asian languages, to summarise smokeless tobacco policies and their impact. Inclusion criteria were all types of studies on smokeless tobacco users that mentioned any smokeless tobacco relevant policies since 2005, except systematic reviews. Policies issued by organisations or private institutions were excluded as well as studies on e-cigarettes and Electronic Nicotine Delivery System except where harm reduction or switching were evaluated as a tobacco cessation strategy. Two reviewers independently screened articles, and data were extracted after standardisation. Quality of studies was appraised using the Effective Public Health Practice Project's Quality Assessment Tool. Outcomes for impact assessment included smokeless tobacco prevalence, uptake, cessation, and health effects. Due to substantial heterogeneity in the descriptions of policies and outcomes, data were descriptively and narratively synthesised. This systematic review was registered in PROSPERO (CRD42020191946). FINDINGS: 14 317 records were identified, of which 252 eligible studies were included as describing smokeless tobacco policies. 57 countries had policies targeting smokeless tobacco, of which 17 had policies outside the Framework Convention on Tobacco Control for smokeless tobacco (eg, spitting bans). 18 studies evaluated the impact, which were of variable quality (six strong, seven moderate, and five weak) and reported mainly on prevalence of smokeless tobacco use. The body of work evaluating policy initiatives based on the Framework Convention on Tobacco Control found that these initiatives were associated with reductions in smokeless tobacco prevalence of between 4·4% and 30·3% for taxation and 22·2% and 70·9% for multifaceted policies. Two studies evaluating the non-Framework policy of sales bans reported significant reductions in smokeless tobacco sale (6·4%) and use (combined sex 17·6%); one study, however, reported an increased trend in smokeless tobacco use in the youth after a total sales ban, likely due to cross-border smuggling. The one study reporting on cessation found a 13·3% increase in quit attempts in individuals exposed (47·5%) to Framework Convention on Tobacco Control policy: education, communication, training, and public awareness, compared with non-exposed (34·2%). INTERPRETATION: Many countries have implemented smokeless tobacco control policies, including those that extend beyond the Framework Convention on Tobacco Control. The available evidence suggests that taxation and multifaceted policy initiatives are associated with meaningful reductions in smokeless tobacco use. FUNDING: UK National Institute for Health Research

    Amino acid classification based spectrum kernel fusion for protein subnuclear localization

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Prediction of protein localization in subnuclear organelles is more challenging than general protein subcelluar localization. There are only three computational models for protein subnuclear localization thus far, to the best of our knowledge. Two models were based on protein primary sequence only. The first model assumed homogeneous amino acid substitution pattern across all protein sequence residue sites and used BLOSUM62 to encode <it>k</it>-mer of protein sequence. Ensemble of SVM based on different <it>k</it>-mers drew the final conclusion, achieving 50% overall accuracy. The simplified assumption did not exploit protein sequence profile and ignored the fact of heterogeneous amino acid substitution patterns across sites. The second model derived the <it>PsePSSM </it>feature representation from protein sequence by simply averaging the profile PSSM and combined the <it>PseAA </it>feature representation to construct a kNN ensemble classifier <it>Nuc-PLoc</it>, achieving 67.4% overall accuracy. The two models based on protein primary sequence only both achieved relatively poor predictive performance. The third model required that GO annotations be available, thus restricting the model's applicability.</p> <p>Methods</p> <p>In this paper, we only use the amino acid information of protein sequence without any other information to design a widely-applicable model for protein subnuclear localization. We use <it>K</it>-spectrum kernel to exploit the contextual information around an amino acid and the conserved motif information. Besides expanding window size, we adopt various amino acid classification approaches to capture diverse aspects of amino acid physiochemical properties. Each amino acid classification generates a series of spectrum kernels based on different window size. Thus, (I) window expansion can capture more contextual information and cover size-varying motifs; (II) various amino acid classifications can exploit multi-aspect biological information from the protein sequence. Finally, we combine all the spectrum kernels by simple addition into one single kernel called <it>SpectrumKernel+ </it>for protein subnuclear localization.</p> <p>Results</p> <p>We conduct the performance evaluation experiments on two benchmark datasets: <it>Lei </it>and <it>Nuc-PLoc</it>. Experimental results show that <it>SpectrumKernel+ </it>achieves substantial performance improvement against the previous model <it>Nuc-PLoc</it>, with overall accuracy <it>83.47% </it>against <it>67.4%</it>; and <it>71.23% </it>against <it>50% </it>of <it>Lei SVM Ensemble</it>, against 66.50% of <it>Lei GO SVM Ensemble</it>.</p> <p>Conclusion</p> <p>The method <it>SpectrumKernel</it>+ can exploit rich amino acid information of protein sequence by embedding into implicit size-varying motifs the multi-aspect amino acid physiochemical properties captured by amino acid classification approaches. The kernels derived from diverse amino acid classification approaches and different sizes of <it>k</it>-mer are summed together for data integration. Experiments show that the method <it>SpectrumKernel</it>+ significantly outperforms the existing models for protein subnuclear localization.</p

    PIP2-Binding Site in Kir Channels: Definition by Multiscale Biomolecular Simulations†

    Get PDF
    Phosphatidylinositol bisphosphate (PIP(2)) is an activator of mammalian inwardly rectifying potassium (Kir) channels. Multiscale simulations, via a sequential combination of coarse-grained and atomistic molecular dynamics, enabled exploration of the interactions of PIP(2) molecules within the inner leaflet of a lipid bilayer membrane with possible binding sites on Kir channels. Three Kir channel structures were investigated: X-ray structures of KirBac1.1 and of a Kir3.1-KirBac1.3 chimera and a homology model of Kir6.2. Coarse-grained simulations of the Kir channels in PIP(2)-containing lipid bilayers identified the PIP(2)-binding site on each channel. These models of the PIP(2)-channel complexes were refined by conversion to an atomistic representation followed by molecular dynamics simulation in a lipid bilayer. All three channels were revealed to contain a conserved binding site at the N-terminal end of the slide (M0) helix, at the interface between adjacent subunits of the channel. This binding site agrees with mutagenesis data and is in the proximity of the site occupied by a detergent molecule in the Kir chimera channel crystal. Polar contacts in the coarse-grained simulations corresponded to long-lived electrostatic and H-bonding interactions between the channel and PIP(2) in the atomistic simulations, enabling identification of key side chains

    Niche of harmful alga Aureococcus anophagefferens revealed through ecogenomics

    Get PDF
    Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of National Academy of Sciences for personal use, not for redistribution. The definitive version was published in Proceedings of the National Academy of Sciences 108 (2011): 4352-4357, doi:10.1073/pnas.1016106108.Harmful algal blooms (HABs) cause significant economic and ecological damage worldwide. Despite considerable efforts, a comprehensive understanding of the factors that promote these blooms has been lacking because the biochemical pathways that facilitate their dominance relative to other phytoplankton within specific environments have not been identified. Here, biogeochemical measurements demonstrated that the harmful 43 Aureococcus anophagefferens outcompeted co-occurring phytoplankton in estuaries with elevated levels of dissolved organic matter and turbidity and low levels of dissolved inorganic nitrogen. We subsequently sequenced the first HAB genome (A. anophagefferens) and compared its gene complement to those of six competing phytoplankton species identified via metaproteomics. Using an ecogenomic approach, we specifically focused on the gene sets that may facilitate dominance within the environmental conditions present during blooms. A. anophagefferens possesses a larger genome (56 mbp) and more genes involved in light harvesting, organic carbon and nitrogen utilization, and encoding selenium- and metal-requiring enzymes than competing phytoplankton. Genes for the synthesis of microbial deterrents likely permit the proliferation of this species with reduced mortality losses during blooms. Collectively, these findings suggest that anthropogenic activities resulting in elevated levels of turbidity, organic matter, and metals have opened a niche within coastal ecosystems that ideally suits the unique genetic capacity of A. anophagefferens and thus has facilitated the proliferation of this and potentially other HABs.Joint Genome Institute is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Efforts were also supported by awards from New York Sea Grant to Stony Brook University, National Oceanic and Atmospheric Administration Center for Sponsored Coastal Ocean Research award #NA09NOS4780206 to Woods Hole Oceanographic Institution, NIH grant GM061603 to Harvard University, and NSF award IOS-0841918 to The University of Tennessee

    Anti-calmodulins and Tricyclic Adjuvants in Pain Therapy Block the TRPV1 Channel

    Get PDF
    Ca2+-loaded calmodulin normally inhibits multiple Ca2+-channels upon dangerous elevation of intracellular Ca2+ and protects cells from Ca2+-cytotoxicity, so blocking of calmodulin should theoretically lead to uncontrolled elevation of intracellular Ca2+. Paradoxically, classical anti-psychotic, anti-calmodulin drugs were noted here to inhibit Ca2+-uptake via the vanilloid inducible Ca2+-channel/inflamatory pain receptor 1 (TRPV1), which suggests that calmodulin inhibitors may block pore formation and Ca2+ entry. Functional assays on TRPV1 expressing cells support direct, dose-dependent inhibition of vanilloid-induced 45Ca2+-uptake at µM concentrations: calmidazolium (broad range)≥trifluoperazine (narrow range)>chlorpromazine/amitriptyline>fluphenazine>>W-7 and W-13 (only partially). Most likely a short acidic domain at the pore loop of the channel orifice functions as binding site either for Ca2+ or anti-calmodulin drugs. Camstatin, a selective peptide blocker of calmodulin, inhibits vanilloid-induced Ca2+-uptake in intact TRPV1+ cells, and suggests an extracellular site of inhibition. TRPV1+, inflammatory pain-conferring nociceptive neurons from sensory ganglia, were blocked by various anti-psychotic and anti-calmodulin drugs. Among them, calmidazolium, the most effective calmodulin agonist, blocked Ca2+-entry by a non-competitive kinetics, affecting the TRPV1 at a different site than the vanilloid binding pocket. Data suggest that various calmodulin antagonists dock to an extracellular site, not found in other Ca2+-channels. Calmodulin antagonist-evoked inhibition of TRPV1 and NMDA receptors/Ca2+-channels was validated by microiontophoresis of calmidazolium to laminectomised rat monitored with extracellular single unit recordings in vivo. These unexpected findings may explain empirically noted efficacy of clinical pain adjuvant therapy that justify efforts to develop hits into painkillers, selective to sensory Ca2+-channels but not affecting motoneurons

    Incorporating Distant Sequence Features and Radial Basis Function Networks to Identify Ubiquitin Conjugation Sites

    Get PDF
    Ubiquitin (Ub) is a small protein that consists of 76 amino acids about 8.5 kDa. In ubiquitin conjugation, the ubiquitin is majorly conjugated on the lysine residue of protein by Ub-ligating (E3) enzymes. Three major enzymes participate in ubiquitin conjugation. They are – E1, E2 and E3 which are responsible for activating, conjugating and ligating ubiquitin, respectively. Ubiquitin conjugation in eukaryotes is an important mechanism of the proteasome-mediated degradation of a protein and regulating the activity of transcription factors. Motivated by the importance of ubiquitin conjugation in biological processes, this investigation develops a method, UbSite, which uses utilizes an efficient radial basis function (RBF) network to identify protein ubiquitin conjugation (ubiquitylation) sites. This work not only investigates the amino acid composition but also the structural characteristics, physicochemical properties, and evolutionary information of amino acids around ubiquitylation (Ub) sites. With reference to the pathway of ubiquitin conjugation, the substrate sites for E3 recognition, which are distant from ubiquitylation sites, are investigated. The measurement of F-score in a large window size (−20∼+20) revealed a statistically significant amino acid composition and position-specific scoring matrix (evolutionary information), which are mainly located distant from Ub sites. The distant information can be used effectively to differentiate Ub sites from non-Ub sites. As determined by five-fold cross-validation, the model that was trained using the combination of amino acid composition and evolutionary information performs best in identifying ubiquitin conjugation sites. The prediction sensitivity, specificity, and accuracy are 65.5%, 74.8%, and 74.5%, respectively. Although the amino acid sequences around the ubiquitin conjugation sites do not contain conserved motifs, the cross-validation result indicates that the integration of distant sequence features of Ub sites can improve predictive performance. Additionally, the independent test demonstrates that the proposed method can outperform other ubiquitylation prediction tools

    Intrinsic Structural Disorder Confers Cellular Viability on Oncogenic Fusion Proteins

    Get PDF
    Chromosomal translocations, which often generate chimeric proteins by fusing segments of two distinct genes, represent the single major genetic aberration leading to cancer. We suggest that the unifying theme of these events is a high level of intrinsic structural disorder, enabling fusion proteins to evade cellular surveillance mechanisms that eliminate misfolded proteins. Predictions in 406 translocation-related human proteins show that they are significantly enriched in disorder (43.3% vs. 20.7% in all human proteins), they have fewer Pfam domains, and their translocation breakpoints tend to avoid domain splitting. The vicinity of the breakpoint is significantly more disordered than the rest of these already highly disordered fusion proteins. In the unlikely event of domain splitting in fusion it usually spares much of the domain or splits at locations where the newly exposed hydrophobic surface area approximates that of an intact domain. The mechanisms of action of fusion proteins suggest that in most cases their structural disorder is also essential to the acquired oncogenic function, enabling the long-range structural communication of remote binding and/or catalytic elements. In this respect, there are three major mechanisms that contribute to generating an oncogenic signal: (i) a phosphorylation site and a tyrosine-kinase domain are fused, and structural disorder of the intervening region enables intramolecular phosphorylation (e.g., BCR-ABL); (ii) a dimerisation domain fuses with a tyrosine kinase domain and disorder enables the two subunits within the homodimer to engage in permanent intermolecular phosphorylations (e.g., TFG-ALK); (iii) the fusion of a DNA-binding element to a transactivator domain results in an aberrant transcription factor that causes severe misregulation of transcription (e.g. EWS-ATF). Our findings also suggest novel strategies of intervention against the ensuing neoplastic transformations

    A Method to Find Longevity-Selected Positions in the Mammalian Proteome

    Get PDF
    Evolutionary theory suggests that the force of natural selection decreases with age. To explore the extent to which this prediction directly affects protein structure and function, we used multiple regression to find longevity-selected positions, defined as the columns of a sequence alignment conserved in long-lived but not short-lived mammal species. We analyzed 7,590 orthologous protein families in 33 mammalian species, accounting for body mass, phylogeny, and species-specific mutation rate. Overall, we found that the number of longevity-selected positions in the mammalian proteome is much higher than would be expected by chance. Further, these positions are enriched in domains of several proteins that interact with one another in inflammation and other aging-related processes, as well as in organismal development. We present as an example the kinase domain of anti-Müllerian hormone type-2 receptor (AMHR2). AMHR2 inhibits ovarian follicle recruitment and growth, and a homology model of the kinase domain shows that its longevity-selected positions cluster near a SNP associated with delayed human menopause. Distinct from its canonical role in development, this region of AMHR2 may function to regulate the protein’s activity in a lifespan-specific manner

    ModBase, a database of annotated comparative protein structure models, and associated resources

    Get PDF
    ModBase (http://salilab.org/modbase) is a database of annotated comparative protein structure models. The models are calculated by ModPipe, an automated modeling pipeline that relies primarily on Modeller for fold assignment, sequence–structure alignment, model building and model assessment (http://salilab.org/modeller/). ModBase currently contains 10 355 444 reliable models for domains in 2 421 920 unique protein sequences. ModBase allows users to update comparative models on demand, and request modeling of additional sequences through an interface to the ModWeb modeling server (http://salilab.org/modweb). ModBase models are available through the ModBase interface as well as the Protein Model Portal (http://www.proteinmodelportal.org/). Recently developed associated resources include the SALIGN server for multiple sequence and structure alignment (http://salilab.org/salign), the ModEval server for predicting the accuracy of protein structure models (http://salilab.org/modeval), the PCSS server for predicting which peptides bind to a given protein (http://salilab.org/pcss) and the FoXS server for calculating and fitting Small Angle X-ray Scattering profiles (http://salilab.org/foxs)

    Identification and structural characterization of FYVE domain-containing proteins of Arabidopsis thaliana

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>FYVE domains have emerged as membrane-targeting domains highly specific for phosphatidylinositol 3-phosphate (PtdIns(3)<it>P</it>). They are predominantly found in proteins involved in various trafficking pathways. Although FYVE domains may function as individual modules, dimers or in partnership with other proteins, structurally, all FYVE domains share a fold comprising two small characteristic double-stranded β-sheets, and a C-terminal α-helix, which houses eight conserved Zn<sup>2+ </sup>ion-binding cysteines. To date, the structural, biochemical, and biophysical mechanisms for subcellular targeting of FYVE domains for proteins from various model organisms have been worked out but plant FYVE domains remain noticeably under-investigated.</p> <p>Results</p> <p>We carried out an extensive examination of all <it>Arabidopsis </it>FYVE domains, including their identification, classification, molecular modeling and biophysical characterization using computational approaches. Our classification of fifteen <it>Arabidopsis </it>FYVE proteins at the outset reveals unique domain architectures for FYVE containing proteins, which are not paralleled in other organisms. Detailed sequence analysis and biophysical characterization of the structural models are used to predict membrane interaction mechanisms previously described for other FYVE domains and their subtle variations as well as novel mechanisms that seem to be specific to plants.</p> <p>Conclusions</p> <p>Our study contributes to the understanding of the molecular basis of FYVE-based membrane targeting in plants on a genomic scale. The results show that FYVE domain containing proteins in plants have evolved to incorporate significant differences from those in other organisms implying that they play a unique role in plant signaling pathways and/or play similar/parallel roles in signaling to other organisms but use different protein players/signaling mechanisms.</p
    corecore