1,036 research outputs found

    The `bare' strange stars might not be bare

    Get PDF
    It is proposed that the `bare' strange matter stars might not be bare, and radio pulsars might be in fact `bare' strange stars. As strange matter stars being intensely magnetized rotate, the induced unipolar electric fields would be large enough to construct magnetospheres. This situation is very similar to that discussed by many authors for rotating neutron stars. Also, the strange stars with accretion crusts in binaries could act as X-ray pulsars or X-ray bursters. There are some advantages if radio pulsars are `bare' strange stars.Comment: 11 pages, 1 Postscript figures, LaTeX, Chin. Phys. Lett. 1998, Vol.15, Nov.12, p.93

    Free-Boundary Dynamics in Elasto-plastic Amorphous Solids: The Circular Hole Problem

    Full text link
    We develop an athermal shear-transformation-zone (STZ) theory of plastic deformation in spatially inhomogeneous, amorphous solids. Our ultimate goal is to describe the dynamics of the boundaries of voids or cracks in such systems when they are subjected to remote, time-dependent tractions. The theory is illustrated here for the case of a circular hole in an infinite two-dimensional plate, a highly symmetric situation that allows us to solve much of the problem analytically. In spite of its special symmetry, this example contains many general features of systems in which stress is concentrated near free boundaries and deforms them irreversibly. We depart from conventional treatments of such problems in two ways. First, the STZ analysis allows us to keep track of spatially heterogeneous, internal state variables such as the effective disorder temperature, which determines plastic response to subsequent loading. Second, we subject the system to stress pulses of finite duration, and therefore are able to observe elasto-plastic response during both loading and unloading. We compute the final deformations and residual stresses produced by these stress pulses. Looking toward more general applications of these results, we examine the possibility of constructing a boundary-layer theory that might be useful in less symmetric situations.Comment: 30 pages (preprint format), 9 figure

    resolving a 150 year old paternity case in mormon history using dtc autosomal dna testing of distant relatives

    Get PDF
    Abstract Although autosomal DNA testing has been available for a number of years, its use to reconstruct genetic profiles of people that lived centuries in the past is relatively recent and there are no published cases where it was employed to verify a kinship relation, likely to be an alleged paternity, that occurred one and a half century ago. DNA testing has already been employed to study the ancestry and posterity of Joseph Smith Jr., founder of the Latter-day Saint (Mormon) movement. Thanks to information found on the paternally inherited Y chromosome, a number of alleged paternities have been disproved, but obviously this analysis is not effective for alleged daughters. Likewise, his reconstructed mitogenome sequence, reported here for the first time, provides information about his maternal ancestry, but is useless in any paternity questions due to the strict maternal inheritance. Among all the children attributed to Joseph Smith Jr., Josephine Lyon, born in 1844, is perhaps the most frequently mentioned. In the current study, 56 individuals, mostly direct descendants of Joseph Smith Jr. and Josephine Lyon, had their autosomal DNA tested to verify Josephine's biological paternity. Nearly 600,000 autosomal SNPs from each subject were typed and detailed genealogical data were compiled. The absence of shared DNA between Josephine's grandson and Joseph Smith Jr.'s five great-grandchildren together with various amounts of autosomal DNA shared by the same individual with four other relatives of Windsor Lyon is a clear indication that Josephine was not related to the Smith, but to the Lyon's family. These inferences were also verified using kinship analyses and likelihood ratio calculations

    Arrival of Paleo-Indians to the Southern Cone of South America: New Clues from Mitogenomes

    Get PDF
    With analyses of entire mitogenomes, studies of Native American mitochondrial DNA (mtDNA) variation have entered the final phase of phylogenetic refinement: the dissection of the founding haplogroups into clades that arose in America during and after human arrival and spread. Ages and geographic distributions of these clades could provide novel clues on the colonization processes of the different regions of the double continent. As for the Southern Cone of South America, this approach has recently allowed the identification of two local clades (D1g and D1j) whose age estimates agree with the dating of the earliest archaeological sites in South America, indicating that Paleo-Indians might have reached that region from Beringia in less than 2000 years. In this study, we sequenced 46 mitogenomes belonging to two additional clades, termed B2i2 (former B2l) and C1b13, which were recently identified on the basis of mtDNA control-region data and whose geographical distributions appear to be restricted to Chile and Argentina. We confirm that their mutational motifs most likely arose in the Southern Cone region. However, the age estimate for B2i2 and C1b13 (11–13,000 years) appears to be younger than those of other local clades. The difference could reflect the different evolutionary origins of the distinct South American-specific sub-haplogroups, with some being already present, at different times and locations, at the very front of the expansion wave in South America, and others originating later in situ, when the tribalization process had already begun. A delayed origin of a few thousand years in one of the locally derived populations, possibly in the central part of Chile, would have limited the geographical and ethnic diffusion of B2i2 and explain the present-day occurrence that appears to be mainly confined to the Tehuelche and Araucanian-speaking grou

    Formation of the internal structure of solids under severe action

    Full text link
    On the example of a particular problem, the theory of vacancies, a new form of kinetic equations symmetrically incorporation the internal and free energies has been derived. The dynamical nature of irreversible phenomena at formation and motion of defects (dislocations) has been analyzed by a computer experiment. The obtained particular results are extended into a thermodynamic identity involving the law of conservation of energy at interaction with an environment (the 1st law of thermodynamics) and the law of energy transformation into internal degree of freedom (relaxation). The identity is compared with the analogous Jarzynski identity. The approach is illustrated by simulation of processes during severe plastic deformation, the Rybin kinetic equation for this case has been derived.Comment: 9 pages, 5 figure

    A forward genetic screen identifies host factors that influence the lysis-lysogeny decision in phage lambda

    Get PDF
    The lysis‐lysogeny decision made by bacteriophage lambda is one of the classic problems of molecular biology. Shortly after infecting a cell, the virus can either go down the lytic pathway and make more viruses, or go down the lysogenic pathway and integrate itself into the host genome. While much is known about how this decision takes place, the extent to which host physiology influences this decision and the mechanisms by which this influence takes place has remained mysterious. To answer this question, we performed a forward genetic screen to systematically identify all of the genes in E. coli that influence the lysis‐lysogeny decision. Our results demonstrate previously unknown links between host physiology and viral decision making and shed new light on this classic system

    A Model Approach to the Electrochemical Cell: An Inquiry Activity

    Get PDF
    In an attempt to address some student misconceptions in electrochemistry, this guided-inquiry laboratory was devised to give students an opportunity to use a manipulative that simulates the particulatelevel activity within an electrochemical cell, in addition to using an actual electrochemical cell. Students are led through a review of expected prior knowledge relating to oxidation and reduction half-reactions. Then, the students examine the macroscopic level by constructing and using an electrochemical cell. Finally, students use the manipulative and make connections between the two levels through class discussion. The misconceptions involve the movement of electrons and ions through solution and the salt bridge, the resulting charges of the half-cells, and the charge sign given to the anode and cathode on electrochemical and electrolytic cells. Additionally, the activity covers oxidation and reduction reactions in electrochemical cells and provides practice drawing and labeling parts of an electrochemical cell. Results, pre- and post-testing and student comments, indicate that this laboratory facilitates students’ understanding of electrochemical cells
    corecore