1,084 research outputs found

    Effect of a Profound Feedstock Change on the Structure and Performance of Biogas Microbiomes

    Get PDF
    In this study the response of biogas-producing microbiomes to a profound feedstock change was investigated. The microbiomes were adapted to the digestion of either 100% sugar beet, maize silage, or of the silages with elevated amounts of total ammonium nitrogen (TAN) by adding ammonium carbonate or animal manure. The feedstock exchange resulted in a short-range decrease or increase in the biogas yields according to the level of chemical feedstock complexity. Fifteen taxa were found in all reactors and can be considered as generalists. Thirteen taxa were detected in the reactors operated with low TAN and six in the reactors with high TAN concentration. Taxa assigned to the phylum Bacteroidetes and to the order Spirochaetales increased with the exchange to sugar beet silage, indicating an affinity to easily degradable compounds. The recorded TAN-sensitive taxa (phylum Cloacimonetes) showed no specific affinity to maize or sugar beet silage. The archaeal community remained unchanged. The reported findings showed a smooth adaptation of the microbial communities, without a profound negative impact on the overall biogas production indicating that the two feedstocks, sugar beet and maize silage, potentially do not contain chemical compounds that are difficult to handle during anaerobic digestion

    EEG Microstate Differences in Medicated vs. Medication-Naïve First-Episode Psychosis Patients

    Get PDF
    There has been considerable interest in the role of synchronous brain activity abnormalities in the pathophysiology of psychotic disorders and their relevance for treatment; one index of such activity are EEG resting-state microstates. These reflect electric field configurations of the brain that persist over 60-120 ms time periods. A set of quasi-stable microstates classes A, B, C, and D have been repeatedly identified across healthy participants. Changes in microstate parameters coverage, duration and occurrence have been found in medication-naïve as well as medicated patients with psychotic disorders compared to healthy controls. However, to date, only two studies have directly compared antipsychotic medication effects on EEG microstates either pre- vs. post-treatment or between medicated and unmedicated chronic schizophrenia patients. The aim of this study was therefore to directly compare EEG resting-state microstates between medicated and medication-naïve (untreated) first-episode (FEP) psychosis patients (mFEP vs. uFEP). We used 19-channel clinical EEG recordings to compare temporal parameters of four prototypical microstate classes (A-D) within an overall sample of 47 patients (mFEP n = 17; uFEP n = 30). The results demonstrated significant decreases of microstate class A and significant increases of microstate class B in mFEP compared to uFEP. No significant differences between groups were found for microstate classes C and D. Further studies are needed to replicate these results in longitudinal designs that assess antipsychotic medication effects on neural networks at the onset of the disorder and over time during illness progression. As treatment response and compliance in FEP patients are relatively low, such studies could contribute to better understand treatment outcomes and ultimately improve treatment strategies

    EEG microstates as biomarker for psychosis in ultra-high-risk patients

    Get PDF
    Resting-state EEG microstates are brief (50-100 ms) periods, in which the spatial configuration of scalp global field power remains quasi-stable before rapidly shifting to another configuration. Changes in microstate parameters have been described in patients with psychotic disorders. These changes have also been observed in individuals with a clinical or genetic high risk, suggesting potential usefulness of EEG microstates as a biomarker for psychotic disorders. The present study aimed to investigate the potential of EEG microstates as biomarkers for psychotic disorders and future transition to psychosis in patients at ultra-high-risk (UHR). We used 19-channel clinical EEG recordings and orthogonal contrasts to compare temporal parameters of four normative microstate classes (A-D) between patients with first-episode psychosis (FEP; n = 29), UHR patients with (UHR-T; n = 20) and without (UHR-NT; n = 34) later transition to psychosis, and healthy controls (HC; n = 25). Microstate A was increased in patients (FEP & UHR-T & UHR- NT) compared to HC, suggesting an unspecific state biomarker of general psychopathology. Microstate B displayed a decrease in FEP compared to both UHR patient groups, and thus may represent a state biomarker specific to psychotic illness progression. Microstate D was significantly decreased in UHR-T compared to UHR-NT, suggesting its potential as a selective biomarker of future transition in UHR patients

    Parental micronutrient deficiency distorts liver DNA methylation and expression of lipid genes associated with a fatty-liver-like phenotype in offspring

    Get PDF
    Micronutrient status of parents can affect long term health of their progeny. Around 2 billion humans are affected by chronic micronutrient deficiency. In this study we use zebrafish as a model system to examine morphological, molecular and epigenetic changes in mature offspring of parents that experienced a one-carbon (1-C) micronutrient deficiency. Zebrafish were fed a diet sufficient, or marginally deficient in 1-C nutrients (folate, vitamin B12, vitamin B6, methionine, choline), and then mated. Offspring livers underwent histological examination, RNA sequencing and genome-wide DNA methylation analysis. Parental 1-C micronutrient deficiency resulted in increased lipid inclusion and we identified 686 differentially expressed genes in offspring liver, the majority of which were downregulated. Downregulated genes were enriched for functional categories related to sterol, steroid and lipid biosynthesis, as well as mitochondrial protein synthesis. Differential DNA methylation was found at 2869 CpG sites, enriched in promoter regions and permutation analyses confirmed the association with parental feed. Our data indicate that parental 1-C nutrient status can persist as locus specific DNA methylation marks in descendants and suggest an effect on lipid utilization and mitochondrial protein translation in F1 livers. This points toward parental micronutrients status as an important factor for offspring health and welfare.publishedVersio

    On-Surface Carbon Nitride Growth from Polymerization of 2,5,8-Triazido-s-heptazine

    Full text link
    Carbon nitrides have recently come into focus for photo- and thermal catalysis, both as support materials for metal nanoparticles as well as photocatalysts themselves. While many approaches for the synthesis of three-dimensional carbon nitride materials are available, only top-down approaches by exfoliation of powders lead to thin film flakes of this inherently two-dimensional material. Here, we describe an in situ on-surface synthesis of monolayer 2D carbon nitride films, as a first step towards precise combination with other 2D materials. Starting with a single monomer precursor, we show that 2,5,8-triazido-s-heptazine (TAH) can be evaporated intact, deposited on a single crystalline Au(111) or graphite support, and activated via azide decomposition and subsequent coupling to form a covalent polyheptazine network. We demonstrate that the activation can occur in three pathways, via electrons (X-ray illumination), photons (UV illumination) and thermally. Our work paves the way to coat materials with extended carbon nitride networks which are, as we show, stable under ambient conditions

    A cryogenic rotation stage with a large clear aperture for the half-wave plates in the Spider instrument

    Get PDF
    We describe the cryogenic half-wave plate rotation mechanisms built for and used in Spider, a polarization-sensitive balloon-borne telescope array that observed the Cosmic Microwave Background at 95 GHz and 150 GHz during a stratospheric balloon flight from Antarctica in January 2015. The mechanisms operate at liquid helium temperature in flight. A three-point contact design keeps the mechanical bearings relatively small but allows for a large (305 mm) diameter clear aperture. A worm gear driven by a cryogenic stepper motor allows for precise positioning and prevents undesired rotation when the motors are depowered. A custom-built optical encoder system monitors the bearing angle to an absolute accuracy of +/- 0.1 degrees. The system performed well in Spider during its successful 16 day flight.Comment: 11 pages, 7 figures, Published in Review of Scientific Instruments. v2 includes reviewer changes and longer literature revie

    Patients’ needs and preferences in routine follow-up for early breast cancer; an evaluation of the changing role of the nurse practitioner

    Get PDF
    International audienceIn evaluating follow-up of early breast cancer, patients' views on care are important. The aim of this study was to evaluate the effect of the introduction of nurse practitioners (NPs) in a breast cancer unit on patients' informational needs, preferences and attitude towards follow-up

    Pointing control for the SPIDER balloon-borne telescope

    Full text link
    We present the technology and control methods developed for the pointing system of the SPIDER experiment. SPIDER is a balloon-borne polarimeter designed to detect the imprint of primordial gravitational waves in the polarization of the Cosmic Microwave Background radiation. We describe the two main components of the telescope's azimuth drive: the reaction wheel and the motorized pivot. A 13 kHz PI control loop runs on a digital signal processor, with feedback from fibre optic rate gyroscopes. This system can control azimuthal speed with < 0.02 deg/s RMS error. To control elevation, SPIDER uses stepper-motor-driven linear actuators to rotate the cryostat, which houses the optical instruments, relative to the outer frame. With the velocity in each axis controlled in this way, higher-level control loops on the onboard flight computers can implement the pointing and scanning observation modes required for the experiment. We have accomplished the non-trivial task of scanning a 5000 lb payload sinusoidally in azimuth at a peak acceleration of 0.8 deg/s2^2, and a peak speed of 6 deg/s. We can do so while reliably achieving sub-arcminute pointing control accuracy.Comment: 20 pages, 12 figures, Presented at SPIE Ground-based and Airborne Telescopes V, June 23, 2014. To be published in Proceedings of SPIE Volume 914

    Mobile Air Quality Studies (MAQS) - an international project

    Get PDF
    Due to an increasing awareness of the potential hazardousness of air pollutants, new laws, rules and guidelines have recently been implemented globally. In this respect, numerous studies have addressed traffic-related exposure to particulate matter using stationary technology so far. By contrast, only few studies used the advanced technology of mobile exposure analysis. The Mobile Air Quality Study (MAQS) addresses the issue of air pollutant exposure by combining advanced high-granularity spatial-temporal analysis with vehicle-mounted, person-mounted and roadside sensors. The MAQS-platform will be used by international collaborators in order 1) to assess air pollutant exposure in relation to road structure, 2) to assess air pollutant exposure in relation to traffic density, 3) to assess air pollutant exposure in relation to weather conditions, 4) to compare exposure within vehicles between front and back seat (children) positions, and 5) to evaluate "traffic zone"- exposure in relation to non-"traffic zone"-exposure. Primarily, the MAQS-platform will focus on particulate matter. With the establishment of advanced mobile analysis tools, it is planed to extend the analysis to other pollutants including including NO2, SO2, nanoparticles, and ozone
    corecore