12 research outputs found

    Multiplane 3D superresolution optical fluctuation imaging

    Get PDF
    By switching fluorophores on and off in either a deterministic or a stochastic manner, superresolution microscopy has enabled the imaging of biological structures at resolutions well beyond the diffraction limit. Superresolution optical fluctuation imaging (SOFI) provides an elegant way of overcoming the diffraction limit in all three spatial dimensions by computing higher-order cumulants of image sequences of blinking fluorophores acquired with a conventional widefield microscope. So far, three-dimensional (3D) SOFI has only been demonstrated by sequential imaging of multiple depth positions. Here we introduce a versatile imaging scheme which allows for the simultaneous acquisition of multiple focal planes. Using 3D cross-cumulants, we show that the depth sampling can be increased. Consequently, the simultaneous acquisition of multiple focal planes reduces the acquisition time and hence the photo-bleaching of fluorescent markers. We demonstrate multiplane 3D SOFI by imaging the mitochondria network in fixed C2C12 cells over a total volume of 65×65×3.5ÎŒm365\times65\times3.5 \mu\textrm{m}^3 without depth scanning.Comment: 7 pages, 3 figure

    Three-dimensional Super-resolution Optical Fluctuation Imaging

    Get PDF
    Super-resolution optical fluctuation imaging (SOFI) achieves three-dimensional super-resolution by computing higher-order spatio-temporal cross-cumulants of stochastically blink-ing fluorophores. In contrast to localization microscopy, SOFI is compatible with weakly emitting fluorophores and a wider range of blinking conditions. The main drawback of SOFI is the nonlinear response to brightness and blinking heterogeneities in the sample, which limits the use of higher cumulant orders. We present a balanced SOFI algorithm for mapping molecular parameters and for linearizing the brightness response and we outline a MATLAB toolbox for two- and three-dimensional SOFI analysis. We show super-resolved three-dimensional cell structures imaged with a multi-plane wide-field microscope. The simultaneous acqui-sition of several focal planes significantly reduces the acquisition time and helps limiting the photo-bleaching of the marker fluorophores

    Mapping molecular statistics with balanced super-resolution optical fluctuation imaging (bSOFI)

    Get PDF
    Super-resolution optical fluctuation imaging (SOFI) achieves 3D super-resolution by computing temporal cumulants or spatio-temporal cross-cumulants of stochastically blinking fluorophores. In contrast to localization microscopy, SOFI is compatible with weakly emitting fluorophores and a wide range of blinking conditions. The main drawback of SOFI is the nonlinear response to brightness and blinking heterogeneities in the sample, which limits the use of higher cumulant orders for improving the resolution. Balanced super-resolution optical fluctuation imaging (bSOFI) analyses several cumulant orders for extracting molecular parameter maps, such as molecular state lifetimes, concentration and brightness distributions of fluorophores within biological samples. Moreover, the estimated blinking statistics are used to balance the image contrast, i.e. linearize the brightness and blinking response and to obtain a resolution improving linearly with the cumulant order. Using a widefield total-internal-reflection (TIR) fluorescence microscope, we acquired image sequences of fluorescently labelled microtubules in fixed HeLa cells. We demonstrate an up to five-fold resolution improvement as compared to the diffraction-limited image, despite low single-frame signal-to-noise ratios. Due to the TIR illumination, the intensity profile in the sample decreases exponentially along the optical axis, which is reported by the estimated spatial distributions of the molecular brightness as well as the blinking on-ratio. Therefore, TIR-bSOFI also encodes depth information through these parameter maps. bSOFI is an extended version of SOFI that cancels the nonlinear response to brightness and blinking heterogeneities. The obtained balanced image contrast significantly enhances the visual perception of super-resolution based on higher-order cumulants and thereby facilitates the access to higher resolutions. Furthermore, bSOFI provides microenvironment-related molecular parameter maps and paves the way for functional super-resolution microscopy based on stochastic switching

    Nonlinear Correlation Spectroscopy (NLCS)

    No full text
    We present a novel concept for optical spectroscopy called nonlinear correlation spectroscopy (NLCS). NLCS analyses coherent field fluctuations of the second and third harmonic light generated by diffusing nanoparticles. Particles based on noncentrosymmetric nonlinear materials such as KNbO3 show a strong second as well as third harmonic response. The method and the theory are introduced and experimental NLCS results in fetal calf serum are presented showing the promising selectivity of this technique for measurement in complex biological environments

    Nonlinear Correlation Spectroscopy (NLCS)

    No full text
    We present a novel concept for optical spectroscopy called nonlinear correlation spectroscopy (NLCS). NLCS analyses coherent field fluctuations of the second and third harmonic light generated by diffusing nanoparticles. Particles based on noncentrosymmetric nonlinear materials such as KNbO<sub>3</sub> show a strong second as well as third harmonic response. The method and the theory are introduced and experimental NLCS results in fetal calf serum are presented showing the promising selectivity of this technique for measurement in complex biological environments
    corecore