49 research outputs found

    An Integrated Assessment of Water Markets: Australia, Chile, China, South Africa and the USA

    Get PDF
    The paper provides an integrated framework to assess water markets in terms of their institutional underpinnings and the three ‘pillars’ of integrated water resource management: economic efficiency, equity and environmental sustainability. This framework can be used: (1) to benchmark different water markets; (2) to track performance over time; and (3) to identify ways in which water markets might be adjusted by informed policy makers to achieve desired goals. The framework is used to identify strengths and limitations of water markets in: (1) Australia’s Murray-Darling Basin; (2) Chile (in particular the Limarí Valley); (3) China (in particular, the North); (4) South Africa; and (5) the western United States. It identifies what water markets are currently able to contribute to integrated water resource management, what criteria underpin these markets, and which components of their performance may require further development.

    TOI-836 : a super-Earth and mini-Neptune transiting a nearby K-dwarf

    Get PDF
    Funding: TGW, ACC, and KH acknowledge support from STFC consolidated grant numbers ST/R000824/1 and ST/V000861/1, and UKSA grant ST/R003203/1.We present the discovery of two exoplanets transiting TOI-836 (TIC 440887364) using data from TESS Sector 11 and Sector 38. TOI-836 is a bright (T = 8.5 mag), high proper motion (∼200 mas yr−1), low metallicity ([Fe/H]≈−0.28) K-dwarf with a mass of 0.68 ± 0.05 M⊙ and a radius of 0.67 ± 0.01 R⊙. We obtain photometric follow-up observations with a variety of facilities, and we use these data-sets to determine that the inner planet, TOI-836 b, is a 1.70 ± 0.07 R⊕ super-Earth in a 3.82 day orbit, placing it directly within the so-called ‘radius valley’. The outer planet, TOI-836 c, is a 2.59 ± 0.09 R⊕ mini-Neptune in an 8.60 day orbit. Radial velocity measurements reveal that TOI-836 b has a mass of 4.5 ± 0.9 M⊕, while TOI-836 c has a mass of 9.6 ± 2.6 M⊕. Photometric observations show Transit Timing Variations (TTVs) on the order of 20 minutes for TOI-836 c, although there are no detectable TTVs for TOI-836 b. The TTVs of planet TOI-836 c may be caused by an undetected exterior planet.Publisher PDFPeer reviewe

    Cardiovascular magnetic resonance phase contrast imaging

    Get PDF

    Multi-messenger Observations of a Binary Neutron Star Merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ∼ 1.7 {{s}} with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of {40}-8+8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 {M}ȯ . An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ∼ 40 {{Mpc}}) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ∼10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ∼ 9 and ∼ 16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta.</p

    Water Markets and Scarcity: Australia’s Murray Darling Basin and the US Southwest

    No full text
    Australia’s Murray-Darling Basin and south western United States share: (1) climate variability resulting in the need for large water storage investment; (2) the need for internal and cross-border (state) water management; (3) an historical over-allocation of water to irrigators; and (4) increasing competition between agricultural and urban demand and in situ environmental and recreational uses. The ability of water markets in these two regions to mitigate water scarcity is compared in this report. The evaluation suggests that on-going water market reform, along with processes to account for the public interest, can promote equity, environmental sustainability and economic efficiency

    Water Markets and Scarcity: Australia’s Murray Darling Basin and the US Southwest

    No full text
    Water markets in Australia’s Murray-Darling Basin and the western US are compared in terms of their ability to mitigate water scarcity. The two regions share: (1) climate variability that requires large investment in water storages; (2) the need for internal and cross-border (state) water management; (3) an historical over allocation of water to irrigators; and (4) increasing competition among different uses (agricultural, environmental and recreational in situ uses, urban demand). The evaluation of the two markets suggests that on-going water market reform along with processes to account for the public interest can promote equity, environmental sustainability and economic efficiency.

    The Betrayal of Edom: Remarks on a claimed tradition

    Get PDF
    Biblical and post-Biblical texts refer to the tradition of the betrayal of Edom. During theconquest the brother-nation of Edom would have betrayed Judah by choosing sides with the Babylonians. Historical and archaeological evidence for this ‘fact’ is absent or not convincing. It is argued that the occupation of Southern Judah by the Edomites in late Babylonian and/or Persian times would have been the source of this claimed tradition
    corecore