132 research outputs found

    Domain specific software architectures: Command and control

    Get PDF
    GTE is the Command and Control contractor for the Domain Specific Software Architectures program. The objective of this program is to develop and demonstrate an architecture-driven, component-based capability for the automated generation of command and control (C2) applications. Such a capability will significantly reduce the cost of C2 applications development and will lead to improved system quality and reliability through the use of proven architectures and components. A major focus of GTE's approach is the automated generation of application components in particular subdomains. Our initial work in this area has concentrated in the message handling subdomain; we have defined and prototyped an approach that can automate one of the most software-intensive parts of C2 systems development. This paper provides an overview of the GTE team's DSSA approach and then presents our work on automated support for message processing

    Measuring ECN++: good news for ++, bad news for ECN over mobile

    Get PDF
    After ECN was first added to IP in 2001, it was hit by a succession of deployment problems. Studies in recent years have concluded that path traversal of ECN has become close to universal. In this article, we test whether the performance enhancement called ECN++ will face a similar deployment struggle as did base ECN. For this, we assess the feasibility of ECN++ deployment over mobile as well as fixed networks. In the process, we discover bad news for the base ECN protocol: contrary to accepted beliefs, more than half the mobile carriers we tested wipe the ECN field at the first upstream hop. All packets still get through, and congestion control still functions, just without the benefits of ECN. This throws into question whether previous studies used representative vantage points. This article also reports the good news that, wherever ECN gets through, we found no deployment problems for the "++" enhancement to ECN. The article includes the results of other in-depth tests that check whether servers that claim to support ECN actually respond correctly to explicit congestion feedback. Those interested can access the raw measurement data online.The work of Anna Maria Mandalari has been funded by the EU FP7 METRICS (607728) project. The work of Marcelo Bagnulo has been performed in the framework of the H2020-ICT-2014-2 project 5G NORMA and the 5G-City project funded by MINECO. This work was partially supported by the EU H2020 research and innovation program under grant agreement No. 644399 (MONROE) and grant agreement No. 688421 (MAMI)

    Quercetin Targets Cysteine String Protein (CSPα) and Impairs Synaptic Transmission

    Get PDF
    Cysteine string protein (CSPalpha) is a synaptic vesicle protein that displays unique anti-neurodegenerative properties. CSPalpha is a member of the conserved J protein family, also called the Hsp40 (heat shock protein of 40 kDa) protein family, whose importance in protein folding has been recognized for many years. Deletion of the CSPalpha in mice results in knockout mice that are normal for the first 2-3 weeks of life followed by an unexplained presynaptic neurodegeneration and premature death. How CSPalpha prevents neurodegeneration is currently not known. As a neuroprotective synaptic vesicle protein, CSPalpha represents a promising therapeutic target for the prevention of neurodegenerative disorders.Here, we demonstrate that the flavonoid quercetin promotes formation of stable CSPalpha-CSPalpha dimers and that quercetin-induced dimerization is dependent on the unique cysteine string region. Furthermore, in primary cultures of Lymnaea neurons, quercetin induction of CSPalpha dimers correlates with an inhibition of synapse formation and synaptic transmission suggesting that quercetin interfers with CSPalpha function. Quercetin's action on CSPalpha is concentration dependent and does not promote dimerization of other synaptic proteins or other J protein family members and reduces the assembly of CSPalpha:Hsc70 units (70kDa heat shock cognate protein).Quercetin is a plant derived flavonoid and popular nutritional supplement proposed to prevent memory loss and altitude sickness among other ailments, although its precise mechanism(s) of action has been unclear. In view of the therapeutic promise of upregulation of CSPalpha and the undesired consequences of CSPalpha dysfunction, our data establish an essential proof of principle that pharmaceutical agents can selectively target the neuroprotective J protein CSPalpha

    A Nuclear Solution to Climate Change?

    Get PDF
    The U.N. Framework Convention on Climate Change calls for the stabilization of greenhouse gas concentrations at a level that would prevent dangerous changes in climate. An ambitious target would be stabilization at an equivalent doubling of the preindustrial CO2 concentration. To achieve this, fossil-fuel carbon emissions in 2050 should not exceed their current level, despite an expected doubling or tripling in world demand for energy. Lacking a crystal ball that tells us the future, we simply select one possible scenario that achieves the emissions target. We assume that by 2050, world population and average per-capita energy consumption each rise by 50%, with annual world primary energy consumption reaching 900 EJ (exajoules, 1018 joules). A roughly equal contribution of 300 EJ each is assumed for conventional fossil fuels, for renewable and "decarbonized" fossil fuel sources, and for nuclear fission. This is a challenging scenario, especially because restraining the increase in average per-capita energy consumption in the face of the economic aspirations of developing countries will require substantial improvements in energy efficiency

    Conclusions of the II International and IV Spanish Hydration Congress. Toledo, Spain, 2nd-4th December, 2015

    Get PDF
    Water is the major component of our organism representing about 60% of total body weight in adults and has to be obtained through the consumption of different foods and beverages as part of our diet. Water is an essential nutrient performing important functions, including transport of other nutrients, elimination of waste products, temperature regulation, lubrication and structural support. In this context, hydration through water has an essential role in health and wellness, which has been highly acknowledged in recent years among the health community experts such as nutritionists, dietitians, general practitioners, pharmacists, educators, as well as by physical activity and sport sciences experts and the general population

    In-situ estimation of ice crystal properties at the South Pole using LED calibration data from the IceCube Neutrino Observatory

    Get PDF
    The IceCube Neutrino Observatory instruments about 1 km3 of deep, glacial ice at the geographic South Pole using 5160 photomultipliers to detect Cherenkov light emitted by charged relativistic particles. A unexpected light propagation effect observed by the experiment is an anisotropic attenuation, which is aligned with the local flow direction of the ice. Birefringent light propagation has been examined as a possible explanation for this effect. The predictions of a first-principles birefringence model developed for this purpose, in particular curved light trajectories resulting from asymmetric diffusion, provide a qualitatively good match to the main features of the data. This in turn allows us to deduce ice crystal properties. Since the wavelength of the detected light is short compared to the crystal size, these crystal properties do not only include the crystal orientation fabric, but also the average crystal size and shape, as a function of depth. By adding small empirical corrections to this first-principles model, a quantitatively accurate description of the optical properties of the IceCube glacial ice is obtained. In this paper, we present the experimental signature of ice optical anisotropy observed in IceCube LED calibration data, the theory and parametrization of the birefringence effect, the fitting procedures of these parameterizations to experimental data as well as the inferred crystal properties.</p

    Conditional normalizing flows for IceCube event reconstruction

    Get PDF

    Galactic Core-Collapse Supernovae at IceCube: “Fire Drill” Data Challenges and follow-up

    Get PDF
    The next Galactic core-collapse supernova (CCSN) presents a once-in-a-lifetime opportunity to make astrophysical measurements using neutrinos, gravitational waves, and electromagnetic radiation. CCSNe local to the Milky Way are extremely rare, so it is paramount that detectors are prepared to observe the signal when it arrives. The IceCube Neutrino Observatory, a gigaton water Cherenkov detector below the South Pole, is sensitive to the burst of neutrinos released by a Galactic CCSN at a level >10σ. This burst of neutrinos precedes optical emission by hours to days, enabling neutrinos to serve as an early warning for follow-up observation. IceCube\u27s detection capabilities make it a cornerstone of the global network of neutrino detectors monitoring for Galactic CCSNe, the SuperNova Early Warning System (SNEWS 2.0). In this contribution, we describe IceCube\u27s sensitivity to Galactic CCSNe and strategies for operational readiness, including "fire drill" data challenges. We also discuss coordination with SNEWS 2.0

    All-Energy Search for Solar Atmospheric Neutrinos with IceCube

    Get PDF
    The interaction of cosmic rays with the solar atmosphere generates a secondary flux of mesons that decay into photons and neutrinos – the so-called solar atmospheric flux. Although the gamma-ray component of this flux has been observed in Fermi-LAT and HAWC Observatory data, the neutrino component remains undetected. The energy distribution of those neutrinos follows a soft spectrum that extends from the GeV to the multi-TeV range, making large Cherenkov neutrino telescopes a suitable for probing this flux. In this contribution, we will discuss current progress of a search for the solar neutrino flux by the IceCube Neutrino Observatory using all available data since 2011. Compared to the previous analysis which considered only high-energy muon neutrino tracks, we will additionally consider events produced by all flavors of neutrinos down to GeV-scale energies. These new events should improve our analysis sensitivity since the flux falls quickly with energy. Determining the magnitude of the neutrino flux is essential, since it is an irreducible background to indirect solar dark matter searches
    corecore