
Braun

DOMAIN SPECIFIC SOFTWARE ARCHITECTURES -- COMMAND AND CONTROL

Christine Braun N 9 3 " 17 5 0
William Hatch

Theodore Ruegsegger
GTE Federal Systems

15000 Conference Center Dr.
Chantilly, VA 22021

Bob Balzer
Martin Feather
Neil Goldman

Dave Wile
USC/Information Sciences Institute

Marina Del Rey, CA 90292

Abs_act

GTE is the Command and Control contractor for the Domain

Specific Software Architectures program. The objective of
this program is to develop and demonstrate an architecture-
driven, component-based capability for the automated
generation of command and control (C2) applications. Such
a capability will significantly reduce the cost of C2

application development and will lead to improved system
quality and reliability through the use of proven architectures
and components.

A major focus of GTE's approach is the automated
generation of application components in particular
subdomains. Our initial work in this area has concentrated in

the message handling subdomain; we have defined and
prototyped an approach that can automate one of the most
software-intensive parts of C2 systems development.

This paper provides an overview of the GTE team's DSSA

approach and then presents our work on automated support
for message processing.

The DSSA Concept

DSSA is based on the concept of an accepted generic
software architecture for the target domain. As defined by
DSSA, a software architecture describes the topology of
software components, specifies the component interfaces,
and identifies computational models associated with those

components. The architecture must apply to a wide range of
systems in the chosen domain; thus it must be general and
flexible. It must be established with the consensus of
practitioners in the domain.

Once an architecture is established, components that
conform to the architecture--i.e., that implement elements of
its functionality in conformance with its interfaces---will be

acquired. They may be acquired by identifying and
modifying (if required) existing components or by

specifically creating them. One of the ways they may be
created is through,automated component generation.
DARPA has sponsored work in this area at USC Information

Sciences Institute -- the AP5 application generator project,
and is interested in incorporating this or related technology.

The existence of a domain-specific architecture and

conformant component base will dictate a significantly
different approach to software application development. The
developer will not walt until detailed design or
implementation to search for reuse opportunities; instead, he/
she will be driven by the architecture throughout. The
architecture and component base will help define
requirements and allow construction of rapid prototypes.
Design will use the architecture as a starting point. Design
and development tools will be automated to "walk through"
the architecture and assist the developer in the selection of
appropriate components. The ultimate goal is to significantly
automate the generation of applications. A major DSSA task

is to define such a software lifecycle model and to prototype
a supporting toolset.

These activities will be accompanied by extensive
interaction with the development community for the target
domain, and by technology transition activities. One aspect
of this is that each domain team is working closely with a
DoD agency that carries out major developments in the

designated area. The GTE team is working with the US Army
Communications and Electronics Command.

Why Command and Control?

There are many reasons why the command and control

domain is an excellent target for DSSA technology. It is a
high payoff area; command and control systems are needed

even in the current military climate. (This is particularly true
when one recognizes that applications such as drug
interdiction fall within the C"2"umbrella".) It is a well-

understood area; most of the processing performed in C'2

16

https://ntrs.nasa.gov/search.jsp?R=19930008314 2020-03-17T09:06:40+00:00Z

Braun

applications is not algorithmically complex. However, C2
applications are very large, and much of this size comes from
repeated similar processing -- for example, parsing hundreds
of types of messages. In addition to this commonality within
applications, there is much commonality across applications.
Multiple C2 systems must handle the same message types,
display the same kinds of world maps, etc.

The kinds of commonality in C2 applications are very well-
suited to DSSA techniques. In some areas, components can
be reused identically; these can be placed in the DSSA
component base and highly optimized. In other areas,
components will be very similar in nature but differ in the
particulars, e.g., message parsing. These areas are a natural
fit to the DSSA component generation technology, allowing
a table-driven generator to quickly cream the needed specific
component instances.

GTE's A0oroach

Figure 1 illustrates GTE's overall approach to the DSSA pro-
gram.

Initially, project work will follow two parallel threads. The
first will define a software process model appropriate to

architecture-driven software development and will develop a
toolset to support that process. The second will establish a
capability that implements the process for the command and
control domain, based on a C2 architecture and a set of

reusable C2 components.

The DSSA process model will address all aspects of the
software life cycle. It will describe activities for establishing
system requirements, developing the software system, and
sustaining the system after delivery. The DSSA toolset will
support all of these activities, automating them as far as
possible. In particular, it will automate system development
activities by using the architecture as a template, guiding the
selection of available reusable components, and automating

the generation of specific required components. The toolset
will be constructed insofar as possible from available tools -
- both commercial products and products of the research
community. In particu!ar, it will make use of USCflSI's AP5
application generaWr, DARPA/STARS reuse libraries, and
DARPA/Prototech tools. Open tool interfaces will be
emphasized to minimize specific tool dependencies, thus
making the toolset usable in the widest range of
environments.

Fundamental to the C2 DSSA capability is the development

melhodologlc4fl
basis

Cz Domain components
Srx_'lc

Softw_e

Architecturo suppoas
generslion

STARS,
ARCADIA,

other ISTO
efforts

Commen:_d
Off-The-Shelf

(COTS) Toob

envlronmenV
tool bas_s

Figure 1. GTE's DSSA Approach

17

Braun

of a C2 software architecture. This starts with development

of a multi-viewpoint domain model, created through
interaction with all elements of the DoD C2 community. The

automated Requirements Driven Development (RDD)
methodology will be used in model creation. From this, an
object-oriented software architecture will be developed. The
architecture will tie back to the multi-viewpoint model so
that mappings to different views of the domain functional
decomposition are apparent. George Mason University's
Center for C3I will play a major part in this modeling and
consensus-building activity. A base of components
conforming to the architecture will then be developed. Many
of these will be existing components, perhaps modified to fit
the architecture. Others will be automatically generated

using AP5.

The DSSA capability will be demonstrated by development
of a prototype C2 system, most likely an element of the Army
Tactical Command and Control System (ATCCS). An

independent metrics/validation task will assess the
effectiveness of the approach and gather metrics. The
methodology and toolset will be revised based on findings
and further necessary research will be identified.

Throughout the program, a technology transfer task will
present results in conferences, papers, seminars, and short
courses. The George Mason University Center for C3I will
serve as a focal point for technology transfer.

Application Generation

Apphcation generators are tools that permit software
developers to create software application programs in a much
higher-level language tailored to the application domain.
These programs are automatically translated by the
application generator to a lower-level language, thus
"generating applications." This greatly reduces the effort
required to create working applications, typically by at least
an order of magnitude. The benefits are analogous to those
achieved by moving from assembly language development
to use of standard procedural languages such as FORTRAN,

narrow domains, or subdomains of large domains such as C2.
Because they require a domain specific vocabulary for
expressing applications, they are generally unique to the
domain or subdomain and not easily modified to handle other
domains. Creation of an application generator for a particular
domain, furthermore, is a significant undertaking.

Development of an application generator is most appropriate
in domains that are well-understood and in which many
different developments perform primarily the same kinds of
processing.

USC Information Sciences Institute 0SI) has developed a

capability (called AP5) that supports the development of
application generators. AP5 is based on the concept of
relational abstraction. The application developer identifies
abstract data objects and the logical relationship among
them. Effectively, the developer has access to a "virtual
database" expressed succinctly in terms of the known
structure of the domain's data model. Application behavior is

then expressed in terms of these data objects, accessing them
associatively via queries and modifying them based on
values of other objects. This allows the user to concentrate on
behavior rather than representation, and provides the power

to express that behavior at a very high level.

Providing an AP5 application generator for a particular
subdomain requires the development of a domain-specific

language for that domain. This is a relatively straightforward
task because the language, regardless of domain, involves the
same fairly simple set of relation-oriented constructs for

expressing data relationships, validations, and actions. It is
also a critical task, because the expressive capability of this
language is what provides the application generator's power.
A translator is then developed to map the language to an
underlying program generator, which produces executable
procedural code. This is also not too complex, as all
languages contain similar constructs. Most of the work is
done by the underlying generator. (Currently the system
generates LISP; an Ada generator is in development.)

A drawback to many existing application generators is poor
efficiency of the generated code. This has, in many cases,C, and Ada.

Fourth Generation Languages (4GLs) are application
generators for DBMS-oriented information system
applications. Because 4GLs focus on a narrow class of
applications, they can include very powerful constructs that
allow software to be developed quickly and easily by those
familiar with the application domain. Management
Information System (MIS) developers using 4GLs achieve
productivity improvements of as much as 50-100 times over
traditional (usually COBOL) language users.

Application generators can be (and have been) developed for
other types of applications as well. They are best suited to

: :...........made these generators suitable only for developing

prototypes. AP5 addresses this problem by allowing the user
to specify annotations that provide guidance to the translator
on desired implementations of specific operations. These
annotations can be added incrementally while tuning to

achieve desired performance.

AP5 can play a key role in the C2 DSSA program. We
anticipate that a number of C'2 subdomains will be amenable
to this approach. By developing generators for those
subdomains we can achieve two major advances in

productivity:

18

Braun

reusable subsystems that can then form part of the
component base available to DSSA users.

We have already identified the message handling subdomain
as a candidate for AP5 technology; a tentative choice for the

next area to tackle is fusion processing.

Figure 2 shows the activity flow that will be followed:
identifying classes of components (subdomains) to be
addressed, based on the architecture; defining domain

specific languages and producing generators; developing
annotations to permit optimization; and generating reusable
application components.

DSSA users can use the generators to create specific NATO and JINTACCS messages. Each of these can include
components in the subdomain with far less effort, several hundred message types; for example, there are

DSSA architects can use the generators to create _appr°ximately300 NATO message types. (Many types of
messages are shared by several message families.) Message

C2 Mes_ge Handling

As indicated in Figure 3, the message handling subsystem is
one of the key interfaces between a C2 system and the
"outside world". It provides a means of communicating
information between different C2 systems and to/from other
C2 resources (such as vehicles and weapon installations).
Messages may be text or bit streams; we will deal here with
text messages. Some text messages are free-form, but most
today follow standard prescribed formats; we will deal with
formatted messages.

C2 messages are created by humans (on the transmitting side
of the interface) according to a written description of the
formats. The receiving side parses the message (according to
an encoded understanding of the standard format), validates
it for correcmess, and places the received information in the

database for use by other parts of the system (for example,
decision support).

There are several standard families of messages, for example

formats are described in massive documents using ad hoc,
non-standard description methods. Typically the descriptions
involve much prose. For example, Figure 4 shows the
description for a single line in one type of message.
Furthermore, it is not a complete description; many field
descriptions cross-reference to other descriptions.

A message consists of a number of such lines (called
datasets-- may be more than one physical line) grouped

together in an envelope (which contains from/to information,
classification level, etc.). While each type of message can
contain only certain kinds of datasets, many are optional and

their order is generally not prescribed (though there are
exceptions). Validity of datasets can depend on other datasets
in the message. Each dataset contains a prescribed sequence
of fields, separated by slashes, with a required order and a
well- defined format. Field validity can depend on values in
other fields of that dataset as well as in other datasets in the

message. Figure 5 is an example message (excluding the
envelope).

The code involved in writing the software to implement
message handling is extensive and error prone. Working
from the prose specification, programmers write code to
extract each field from each dataset, validate it according to
the specified rules, translate it to the appropriate internal
representation, build database update transactions, and write
to the database. Typically, a single message type can take
from 5000 - 100,000 lines of HOL code. The Navy
WWMCCS system uses approximately 4 million lines of

code to implement 30 message types. Clearly this is a part of
C2 system development that should be considered for
automation.

Figure 2. DSSA Application Generation Activity Flow

19

Braun

DEVICES

SENSOF_

t Ptan

I DECISION I_ DirK:_
CENTER

riw d_U,

DATABASE

Figure 3. C2 System Operations

Automating C'2 Message Handling Using AP5

To automate C2 message handling using AP5, we have

developed a language specific to the message handling

subdomain that provides constructs for specifying message

formats, for indicating required validations, and for

describing desired database updates.

St_ifvin= Messa=e Formats

Message formats are described in a simple set language that

indicates which datasets are allowed and which are optional

for a particular message type. For example,

type SPOT = (FORCE), (SHIFrK IAIRTK I ArRCRAF'r),

SHIP

would indicate that a SPOT message consists of an optional

FORCE datasct, an optional occurrence of one of the
SHIPTK, AIRTK, or AIRCRAFT datascts, and a required

SHIP dataseL

Message format descriptions can be accompanied by
validations that indicate which combinations of datasets am

valid. For example,

type SPOT = (FORCE), (SHIFTK IAIRTK IAIRCRAFT),
SHIP

validations

disallow MSGID.message-serial-number;

require SHiP.location

no SHIFTK and no AIRTK requires FORCE;

indicates that the message-serial-number field of the MSGID

dataset must not be present, the location field of the SHIP

dataset must be present, and, if no SHIPTK dataset and no

AIRTK dataset is present, the FORCE dataset must be

presenL

Specifvin_ Datasets

Dataset formats are described in terms of the fields that make

up the dataset and the format of each of those fields. Fields
are ordered, so each dataset is characterized by a sequence of

fields. Optional fields are indicated by parenthesizing them.

Mutually exclusive fields are indicated by alternative bars.

As for message formats, dataset descriptions can include

validations. For example, a dataset description of a MSGID

dataset might be:

dataset MSGID = message-code-name (originator)
(message-serial-number) (as-of-month)
(as-of-year) (as-of-DTG)

validations

as-of-DTG precludes as-of-month;
as-of-DTG precludes as-of-year;
as-of-year requires as-of-month;
message-code-name/= SPOT requires originator;,
message-serial-number and no ns-of-DTG

requires as-of-month;
field message-code-name = A'26;

20

Braun

Data Set ID: MSGID

bid Element Descriptive Name

1 Message Code Name

2. Originator

3. Message Serial Number

4. As-of-Month

5. As-of-Year

Edit Rule

1. Must be a member of the

approved set of message code
words.

1. Must be a plain language
address or approved short
title

1. Positive integer between
the values 001 to 999.

2. Out of sequence may indi-
cate missing message. See
rules for specific msg. code
word.

1. Standard abbreviation for

month message sent.

1. May not be a future year.

Remarks

a. Plain language addresses are
validated against values found
in the references

a. May be required for specific
messages.

b. Sequence is restarted on 1
Jan each year. May be rolled
over when upper limit is reached.
c. For Command authorities serial
may be validated to maintain order
when processing reports.

a. Required if serial number is
used and as-of-D'rG not present.
b. Not allowed if as-of-ITl'G not
xesent.

As-of-Month must be present.

Figure 4. Example Message Line Description

NATOUNCLASSIFIED

SIC: NSR

EXER /OPEN GATE 91//

MSGID /NAVSITREP/CINCIBERLANT/135/DEC/91//

PART /I/HOSTILE//

FORCE /OR523/3/37000NO-OI2000W3/145/17K/H//

SHIP /OR523A/KARA/-/CG/-/UR//

SHIP /OR523B/KRESTA//

SHIP /OR523C/KRESTA//

SUBTK /OR734/33000N6-OIOOOOWI/O95/9K/M//

SUB /OR734/TANGO//

PART /II/UNKNOWN/NC//

PART /III/FRIENDLY//

FORCE /CTU 405.1.2/5/420015N2-1333440W8/175/20K//

FORCE /CTU 387.3.2/2/36010NO-OO4380W5/O90/SK//

AMPN /MINE SWEEPING GROUP,..//

AIRTK /934/33000N6-010000WI//

AMPN /ONE P-3 SEARCHIN BOX...//

Figure 5. Example Formatted Message

21

Braun

field odginazor = A'25;
field message-serial-number = N 3;
field as-of-month - month;
field as-of-year = N 4;
-- as-of-DTG hn form: DDHHMMZS MMMYY

field as-of-DGT - day, hour, minute, (Z), SUMI, month,
year;

field SUM1 =N I;

field day = N2;
field hour = N 2;
field mirlut¢ = N 2;
field month = A 3;
field year = N 2;

$_¢ifvin_ Database Transactions

The C2 message description language also includes a means

for describing the transactions to be carried out for each

received message, An example of a segment of such a

specification is:

{insert msg._Orig_.Sr (ORIGINATOR = PROSIGN.FN,
MSG TYPE = MSGID.Cod¢,
MSG_IYrG = sortable_dam (ENVELOPE.DTG),
CLASSIFY = classification_code(ENVELOPE.See));
..,

The database update language also includes tests of field

values, so that updates can be conditional on those values,

and a capability to allow a sequence of updates to be named

and reused in other update instructions. This simple language

provides all the power needed to describe the database

transactions resulting from received messages.

Imtirattam

Clearly, automated generation of message handling software

can save greatly on the labor involved in creating such

software. A message handling subsystem that requires 4

million lines of HOL code should require less than 1% of that
in the message description language.

Perhaps more significantly, there will be little reason to write

most of the code more than once. The code required to parse

and va/idate a message of a particular type is not specific to

the system being implemented. Once the message

specification is developed in the message description

language, it can be reused. Minor changes in the specification

of required database updates can be easily implemented for

individual systems.

An even more far-reaching impact of this work is the

development of a precise, unambiguous way of describing

message formats. Rather than the ad hoc prose descriptions
now used in describing message formats, the message

description language can be used directly. This will eliminate

errors in understanding and correctly implementing message

descriptions.

This precise message description mechanism, along with the

built-in incentive to reuse message description

implementations, will contribute substantially to the

development of more error-free message handling

subsystems. A major aspect of this benefit is improved

interoperability, as systems will no longer be dependent on

the programmers' understanding of message formats. All
implementations will share a common understanding and be

able to intemperate with the rid/power and precision

envisioned for formatted messages.

Acknowledt, ment

The work described in this paper has been supported by the

Defense Advance Research Projects Agency through U.S.

Army Communications-Electronics Command Contract No.

DAA.B07-92-C-Q502 and through NASA Ames Research
Center Contract No. NCC 2-520.

References

[1] Balzer, Bob and Martin Feather, Nell Goldman,

Dave Wile, "Proposal for DS Languages for C3

Messages," USC/ISI working paper, 1992.

[2] Braun, Christine L. and William L. Hatch,

"Software Reuse Through CCIS Architecture

Standardization," Proceedings of the 11th AFCEA

Europe Symposium and Exposition, October 1990.

[3] Hatch, William, "Example Message Descriptions
and Database Transactions," GTE working paper,
1992.

[4] Ruegsegger, Theodore, "Domain Specific Software

Architectures -- Command and Control," briefing

slides, CECOM Real-Time/Reuse Technical

Interchange Meeting, Ft. Monmouth, NJ, February
1992.

[5] Wile, David S., "Adding Relational Abstractions to

Programming Languages," Proceeds'rigs of

workshop on Formal Methods in Software

Engineering, Napa Valley, CA, May 1990.

[6] Balzer, Robert, "A 15 Year Perspective On

Automatic Programming," IEEE Transactions on

Software Engineering, Nov. 1985

[7] Cohen, Donald, "Compiling Complex Database

Triggers," Proceedings of 1989 ACM SIGMOD

(1989), ACM

[8] Goldman, Nell and K. Narayanaswamy, "Software

Evolution through Iterative Prototyping," to appear

in the Proceedings of the 14th ICSE Conference,
IEE, Melbourt_ Australia 1992.

22

