6 research outputs found

    Morphology, Development, and Sediment Dynamics of Elongating Linear Dunes on Mars

    Get PDF
    Linear dunes occur on planetary surfaces, including Earth, Mars, and Titan, yet their dynamics are poorly understood. Recent studies of terrestrial linear dunes suggest they migrate by elongation only in supply limited environments. Here, we investigate elongating linear dunes in the Hellespontus Montes region of Mars which are morphologically similar to terrestrial systems. Multi‐temporal, high‐resolution orbital images show these linear dunes migrate by elongation only and that the fixed sediment source of the dunes probably restricts any lateral migration. Some linear dunes maintain their along length volume and elongate at rates comparable to adjacent barchans, whereas those which decrease in volume show no elongation, suggesting they are near steady state, matching morphometric predictions. Limited sediment supply may restrict Martian linear dunes to several kilometers, significantly shorter than many terrestrial linear dunes. Our results demonstrate the close similarities in dune dynamics across the two planetary surfaces

    The high-resolution map of Oxia Planum, Mars; the landing site of the ExoMars Rosalind Franklin rover mission

    Get PDF
    This 1:30,000 scale geological map describes Oxia Planum, Mars, the landing site for the ExoMars Rosalind Franklin rover mission. The map represents our current understanding of bedrock units and their relationships prior to Rosalind Franklin’s exploration of this location. The map details 15 bedrock units organised into 6 groups and 7 textural and surficial units. The bedrock units were identified using visible and near-infrared remote sensing datasets. The objectives of this map are (i) to identify where the most astrobiologically relevant rocks are likely to be found, (ii) to show where hypotheses about their geological context (within Oxia Planum and in the wider geological history of Mars) can be tested, (iii) to inform both the long-term (hundreds of metres to ∌1 km) and the short-term (tens of metres) activity planning for rover exploration, and (iv) to allow the samples analysed by the rover to be interpreted within their regional geological context

    The Distribution and Accessibility of Geologic Targets near the Lunar South Pole and Candidate Artemis Landing Sites

    Get PDF
    Transformative lunar science will be driven by the accessibility, recovery, and return to Earth of geological specimens. Isolated boulders, rock exposures, and rocky craters at the lunar south pole all provide opportunities for geologic characterization and sampling of the lunar crust. Here, we present the results of orbital geological mapping of the region surrounding the south pole using Lunar Reconnaissance Orbiter Narrow Angle Camera images (0.5–2 m pixel−1). We mapped the distribution of isolated boulders (86,896), rocky craters (3556), and rock exposures (7553) around potential Artemis landing sites 001 and 004 (NASA 2020), which are within or near one of the Artemis III candidate landing regions. We found that boulder abundance decreases with increasing distance from the rim of Shackleton crater. From that correlation, we infer that most of the boulders and rock exposures near Shackleton were deposited as ejecta by the Shackleton impact, and by later the reworking of that material during smaller impact events. We additionally assessed the accessibility of the mapped features, and documented geologic targets located on shallow (<15°) slopes, including those on the Shackleton crater rim and on the "Connecting Ridge" between Shackleton and Henson crater. Such targets could be sampled by a future mission to the lunar south pole region. Our catalog of mapped features is made available to the lunar community

    The Winchcombe meteorite, a unique and pristine witness from the outer solar system.

    Get PDF
    Direct links between carbonaceous chondrites and their parent bodies in the solar system are rare. The Winchcombe meteorite is the most accurately recorded carbonaceous chondrite fall. Its pre-atmospheric orbit and cosmic-ray exposure age confirm that it arrived on Earth shortly after ejection from a primitive asteroid. Recovered only hours after falling, the composition of the Winchcombe meteorite is largely unmodified by the terrestrial environment. It contains abundant hydrated silicates formed during fluid-rock reactions, and carbon- and nitrogen-bearing organic matter including soluble protein amino acids. The near-pristine hydrogen isotopic composition of the Winchcombe meteorite is comparable to the terrestrial hydrosphere, providing further evidence that volatile-rich carbonaceous asteroids played an important role in the origin of Earth's water

    The high-resolution map of Oxia Planum, Mars; the landing site of the ExoMars Rosalind Franklin rover mission

    No full text
    International audienceThis 1:30,000 scale geological map describes Oxia Planum, Mars, the landing site for theExoMars Rosalind Franklin rover mission. The map represents our current understanding ofbedrock units and their relationships prior to Rosalind Franklin’s exploration of this location.The map details 15 bedrock units organised into 6 groups and 7 textural and surficial units.The bedrock units were identified using visible and near-infrared remote sensing datasets.The objectives of this map are (i) to identify where the most astrobiologically relevant rocksare likely to be found, (ii) to show where hypotheses about their geological context (withinOxia Planum and in the wider geological history of Mars) can be tested, (iii) to inform boththe long-term (hundreds of metres to ∌1 km) and the short-term (tens of metres) activityplanning for rover exploration, and (iv) to allow the samples analysed by the rover to beinterpreted within their regional geological context
    corecore