1,915 research outputs found
Minimal Bending Energies of Bilayer Polyhedra
Motivated by recent experiments on bilayer polyhedra composed of amphiphilic
molecules, we study the elastic bending energies of bilayer vesicles forming
polyhedral shapes. Allowing for segregation of excess amphiphiles along the
ridges of polyhedra, we find that bilayer polyhedra can indeed have lower
bending energies than spherical bilayer vesicles. However, our analysis also
implies that, contrary to what has been suggested on the basis of experiments,
the snub dodecahedron, rather than the icosahedron, generally represents the
energetically favorable shape of bilayer polyhedra
Non-local fluctuation correlations in active gels
Many active materials and biological systems are driven far from equilibrium
by embedded agents that spontaneously generate forces and distort the
surrounding material. Probing and characterizing these athermal fluctuations is
essential for understanding the properties and behaviors of such systems. Here
we present a mathematical procedure to estimate the local action of
force-generating agents from the observed fluctuating displacement fields. The
active agents are modeled as oriented force dipoles or isotropic compression
foci, and the matrix on which they act is assumed to be either a compressible
elastic continuum or a coupled network-solvent system. Correlations at a single
point and between points separated by an arbitrary distance are obtained,
giving a total of three independent fluctuation modes that can be tested with
microrheology experiments. Since oriented dipoles and isotropic compression
foci give different contributions to these fluctuation modes, ratiometric
analysis allows us characterize the force generators. We also predict and
experimentally find a high-frequency ballistic regime, arising from individual
force generating events in the form of the slow build-up of stress followed by
rapid but finite decay. Finally, we provide a quantitative statistical model to
estimate the mean filament tension from these athermal fluctuations, which
leads to stiffening of active networks.Comment: 12 pages, 7 figures; some clarifications and ammended figure
notation
INCORPORATION OF QUANTUM STATISTICAL FEATURES IN MOLECULAR DYNAMICS
We formulate a method for incorporating quantum fluctuations into molecular-
dynamics simulations of many-body systems, such as those employed for energetic
nuclear collision processes. Based on Fermi's Golden Rule, we allow spontaneous
transitions to occur between the wave packets which are not energy eigenstates.
The ensuing diffusive evolution in the space of the wave packet parameters
exhibits appealing physical properties, including relaxation towards quantum-
statistical equilibrium.Comment: 8 latex pages + 1 uuencoded ps figur
Effect of symmetry energy on two-nucleon correlation functions in heavy-ion collisions induced by neutron-rich nuclei
Using an isospin-dependent transport model, we study the effects of nuclear
symmetry energy on two-nucleon correlation functions in heavy ion collisions
induced by neutron-rich nuclei. We find that the density dependence of the
nuclear symmetry energy affects significantly the nucleon emission times in
these collisions, leading to larger values of two-nucleon correlation functions
for a symmetry energy that has a stronger density dependence. Two-nucleon
correlation functions are thus useful tools for extracting information about
the nuclear symmetry energy from heavy ion collisions.Comment: Revised version, to appear in Phys. Rev. Let
Intermittency and Exotic Channels
It is pointed out that accurate measurements of short-range two-particle
correlations in like-charge and in channels should be
very helpful in determining the origin of the \lq\lq intermittency\rq\rq\
phenomenon observed recently for the like-charge pion pairs.Comment: 5 p., plain tex, preprint T94/078(Saclay), LPTHE 94/58(Orsay
Soft swimming: Exploiting deformable interfaces for low-Reynolds number locomotion
Reciprocal movement cannot be used for locomotion at low-Reynolds number in
an infinite fluid or near a rigid surface. Here we show that this limitation is
relaxed for a body performing reciprocal motions near a deformable interface.
Using physical arguments and scaling relationships, we show that the
nonlinearities arising from reciprocal flow-induced interfacial deformation
rectify the periodic motion of the swimmer, leading to locomotion. Such a
strategy can be used to move toward, away from, and parallel to any deformable
interface as long as the length scales involved are smaller than intrinsic
scales, which we identify. A macro-scale experiment of flapping motion near a
free surface illustrates this new result
Lipid membranes with an edge
Consider a lipid membrane with a free exposed edge. The energy describing
this membrane is quadratic in the extrinsic curvature of its geometry; that
describing the edge is proportional to its length. In this note we determine
the boundary conditions satisfied by the equilibria of the membrane on this
edge, exploiting variational principles. The derivation is free of any
assumptions on the symmetry of the membrane geometry. With respect to earlier
work for axially symmetric configurations, we discover the existence of an
additional boundary condition which is identically satisfied in that limit. By
considering the balance of the forces operating at the edge, we provide a
physical interpretation for the boundary conditions. We end with a discussion
of the effect of the addition of a Gaussian rigidity term for the membrane.Comment: 8 page
Direct Electrochemistry of Endonuclease III in the Presence and Absence of DNA
The electrochemistry of the base excision repair enzyme Endonuclease III (Endo III) in the presence and absence of DNA has been examined on highly oriented pyrolytic graphite (HOPG). At the surface modified with pyrenated DNA, a reversible signal is observed at 20 mV versus NHE for the [4Fe−4S]^(3+/2+) couple of Endo III, similar to Au. Without DNA modification, oxidative and reductive signals for the [4Fe−4S] cluster of Endo III are found on bare HOPG, allowing a direct comparison between DNA-bound and free redox potentials. These data indicate a shift of approximately −200 mV in the 3+/2+ couple upon binding of Endo III to DNA. This potential shift reflects a difference in affinity for DNA of more than 3 orders of magnitude between the oxidized 3+ and reduced 2+ protein and provides quantitative support for our model utilizing DNA-mediated charge transport to redistribute base excision repair enzymes in the vicinity of damaged DNA
Elastic energy of polyhedral bilayer vesicles
In recent experiments [M. Dubois, B. Dem\'e, T. Gulik-Krzywicki, J.-C.
Dedieu, C. Vautrin, S. D\'esert, E. Perez, and T. Zemb, Nature (London) Vol.
411, 672 (2001)] the spontaneous formation of hollow bilayer vesicles with
polyhedral symmetry has been observed. On the basis of the experimental
phenomenology it was suggested [M. Dubois, V. Lizunov, A. Meister, T.
Gulik-Krzywicki, J. M. Verbavatz, E. Perez, J. Zimmerberg, and T. Zemb, Proc.
Natl. Acad. Sci. U.S.A. Vol. 101, 15082 (2004)] that the mechanism for the
formation of bilayer polyhedra is minimization of elastic bending energy.
Motivated by these experiments, we study the elastic bending energy of
polyhedral bilayer vesicles. In agreement with experiments, and provided that
excess amphiphiles exhibiting spontaneous curvature are present in sufficient
quantity, we find that polyhedral bilayer vesicles can indeed be energetically
favorable compared to spherical bilayer vesicles. Consistent with experimental
observations we also find that the bending energy associated with the vertices
of bilayer polyhedra can be locally reduced through the formation of pores.
However, the stabilization of polyhedral bilayer vesicles over spherical
bilayer vesicles relies crucially on molecular segregation of excess
amphiphiles along the ridges rather than the vertices of bilayer polyhedra.
Furthermore, our analysis implies that, contrary to what has been suggested on
the basis of experiments, the icosahedron does not minimize elastic bending
energy among arbitrary polyhedral shapes and sizes. Instead, we find that, for
large polyhedron sizes, the snub dodecahedron and the snub cube both have lower
total bending energies than the icosahedron
Imaging of Sources in Heavy-Ion Reactions
Imaging of sources from data within the intensity interferometry is
discussed. In the two-pion case, the relative pion source function may be
determined through the Fourier transformation of the correlation function. In
the proton-proton case, the discretized source function may be fitted to the
correlation data.Comment: 12 pages, 3 postscript figures, accepted Physics Letters
- …
