Many active materials and biological systems are driven far from equilibrium
by embedded agents that spontaneously generate forces and distort the
surrounding material. Probing and characterizing these athermal fluctuations is
essential for understanding the properties and behaviors of such systems. Here
we present a mathematical procedure to estimate the local action of
force-generating agents from the observed fluctuating displacement fields. The
active agents are modeled as oriented force dipoles or isotropic compression
foci, and the matrix on which they act is assumed to be either a compressible
elastic continuum or a coupled network-solvent system. Correlations at a single
point and between points separated by an arbitrary distance are obtained,
giving a total of three independent fluctuation modes that can be tested with
microrheology experiments. Since oriented dipoles and isotropic compression
foci give different contributions to these fluctuation modes, ratiometric
analysis allows us characterize the force generators. We also predict and
experimentally find a high-frequency ballistic regime, arising from individual
force generating events in the form of the slow build-up of stress followed by
rapid but finite decay. Finally, we provide a quantitative statistical model to
estimate the mean filament tension from these athermal fluctuations, which
leads to stiffening of active networks.Comment: 12 pages, 7 figures; some clarifications and ammended figure
notation