84 research outputs found
Prominin-1+/CD133+ bone marrow-derived heart-resident cells suppress experimental autoimmune myocarditis
AIMS: Experimental autoimmune myocarditis (EAM) is a CD4(+) T cell-mediated mouse model of inflammatory heart disease. Tissue-resident bone marrow-derived cells adopt different cellular phenotypes depending on the local milieu. We expanded a specific population of bone marrow-derived prominin-1-expressing progenitor cells (PPC) from healthy heart tissue, analysed their plasticity, and evaluated their capacity to protect mice from EAM and heart failure. METHODS AND RESULTS: PPC were expanded from healthy mouse hearts. Analysis of CD45.1/CD45.2 chimera mice confirmed bone marrow origin of PPC. Depending on in vitro culture conditions, PPC differentiated into macrophages, dendritic cells, or cardiomyocyte-like cells. In vivo, PPC acquired a cardiac phenotype after direct injection into healthy hearts. Intravenous injection of PPC into myosin alpha heavy chain/complete Freund's adjuvant (MyHC-alpha/CFA)-immunized BALB/c mice resulted in heart-specific homing and differentiation into the macrophage phenotype. Histology revealed reduced severity scores for PPC-treated mice compared with control animals [treated with phosphate-buffered saline (PBS) or crude bone marrow at day 21 after MyHC-alpha/CFA immunization]. Echocardiography showed preserved fractional shortening and velocity of circumferential shortening in PPC but not PBS-treated MyHC-alpha/CFA-immunized mice. In vitro and in vivo data suggested that interferon-gamma signalling on PPC was critical for nitric oxide-mediated suppression of heart-specific CD4(+) T cells. Accordingly, PPC from interferon-gamma receptor-deficient mice failed to protect MyHC-alpha/CFA-immunized mice from EAM. CONCLUSION: Prominin-1-expressing, heart-resident, bone marrow-derived cells combine high plasticity, T cell-suppressing capacity, and anti-inflammatory in vivo effect
Characteristics of the Early Immune Response Following Transplantation of Mouse ES Cell Derived Insulin-Producing Cell Clusters
Background
The fully differentiated progeny of ES cells (ESC) may eventually be used for cell replacement therapy (CRT). However, elements of the innate immune system may contribute to damage or destruction of these tissues when transplanted.
Methodology/Principal Findings
Herein, we assessed the hitherto ill-defined contribution of the early innate immune response in CRT after transplantation of either ESC derived insulin producing cell clusters (IPCCs) or adult pancreatic islets. Ingress of neutrophil or macrophage cells was noted immediately at the site of IPCC transplantation, but this infiltration was attenuated by day three. Gene profiling identified specific inflammatory cytokines and chemokines that were either absent or sharply reduced by three days after IPCC transplantation. Thus, IPCC transplantation provoked less of an early immune response than pancreatic islet transplantation.
Conclusions/Significance
Our study offers insights into the characteristics of the immune response of an ESC derived tissue in the incipient stages following transplantation and suggests potential strategies to inhibit cell damage to ensure their long-term perpetuation and functionality in CRT
PAX4 Enhances Beta-Cell Differentiation of Human Embryonic Stem Cells
Background
Human embryonic stem cells (HESC) readily differentiate into an apparently haphazard array of cell types, corresponding to all three germ layers, when their culture conditions are altered, for example by growth in suspension as aggregates known as embryoid bodies (EBs). However, this diversity of differentiation means that the efficiency of producing any one particular cell type is inevitably low. Although pancreatic differentiation has been reported from HESC, practicable applications for the use of β-cells derived from HESC to treat diabetes will only be possible once techniques are developed to promote efficient differentiation along the pancreatic lineages.
Methods and Findings
Here, we have tested whether the transcription factor, Pax4 can be used to drive the differentiation of HESC to a β-cell fate in vitro. We constitutively over-expressed Pax4 in HESCs by stable transfection, and used Q-PCR analysis, immunocytochemistry, ELISA, Ca2+ microfluorimetry and cell imaging to assess the role of Pax4 in the differentiation and intracellular Ca2+ homeostasis of β-cells developing in embryoid bodies produced from such HESC. Cells expressing key β-cell markers were isolated by fluorescence-activated cell sorting after staining for high zinc content using the vital dye, Newport Green.
Conclusion
Constitutive expression of Pax4 in HESC substantially enhances their propensity to form putative β-cells. Our findings provide a novel foundation to study the mechanism of pancreatic β-cells differentiation during early human development and to help evaluate strategies for the generation of purified β-cells for future clinical applications
Cathepsin S Deficiency Results in Abnormal Accumulation of Autophagosomes in Macrophages and Enhances Ang II–Induced Cardiac Inflammation
BACKGROUND: Cathepsin S (Cat S) is overexpressed in human atherosclerotic and aneurysmal tissues and may contributes to degradation of extracellular matrix, especially elastin, in inflammatory diseases. We aimed to define the role of Cat S in cardiac inflammation and fibrosis induced by angiotensin II (Ang II) in mice. METHODS AND RESULTS: Cat S-knockout (Cat S(-/-)) and littermate wild-type (WT) C57BL/6J mice were infused continuously with Ang II (750 ng/kg/min) or saline for 7 days. Cat S(-/-) mice showed severe cardiac fibrosis, including elevated expression of collagen I and α-smooth muscle actin (α-SMA), as compared with WT mice. Moreover, macrophage infiltration and expression of inflammatory cytokines (tumor necrosis factor α, transforming growth factor β and interleukin 1β) were significantly greater in Cat S(-/-) than WT hearts. These Ang II-induced effects in Cat S(-/-) mouse hearts was associated with abnormal accumulation of autophagosomes and reduced clearance of damaged mitochondria, which led to increased levels of reactive oxygen species (ROS) and activation of nuclear factor-kappa B (NF-κB) in macrophages. CONCLUSION: Cat S in lysosomes is essential for mitophagy processing in macrophages, deficiency in Cat S can increase damaged mitochondria and elevate ROS levels and NF-κB activity in hypertensive mice, so it regulates cardiac inflammation and fibrosis
Present state and future perspectives of using pluripotent stem cells in toxicology research
The use of novel drugs and chemicals requires reliable data on their potential toxic effects on humans. Current test systems are mainly based on animals or in vitro–cultured animal-derived cells and do not or not sufficiently mirror the situation in humans. Therefore, in vitro models based on human pluripotent stem cells (hPSCs) have become an attractive alternative. The article summarizes the characteristics of pluripotent stem cells, including embryonic carcinoma and embryonic germ cells, and discusses the potential of pluripotent stem cells for safety pharmacology and toxicology. Special attention is directed to the potential application of embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) for the assessment of developmental toxicology as well as cardio- and hepatotoxicology. With respect to embryotoxicology, recent achievements of the embryonic stem cell test (EST) are described and current limitations as well as prospects of embryotoxicity studies using pluripotent stem cells are discussed. Furthermore, recent efforts to establish hPSC-based cell models for testing cardio- and hepatotoxicity are presented. In this context, methods for differentiation and selection of cardiac and hepatic cells from hPSCs are summarized, requirements and implications with respect to the use of these cells in safety pharmacology and toxicology are presented, and future challenges and perspectives of using hPSCs are discussed
Future therapeutic strategies in inflammatory cardiomyopathy : insights from the experimental autoimmune myocarditis model
Inflammatory cardiomyopathy is a common cause of heart failure developing on a basis of cardiac inflammation. Cardiac inflammation - or myocarditis - is usually triggered by infections or cardiac damage of any cause. Experimental autoimmune myocarditis refers to a CD4(+) T cell-mediated mouse model of inflammatory cardiomyopathy. So far, the experimental autoimmune myocarditis model helped us to understand the role of various chemokines, cytokines, and cell subsets in the progression of inflammatory heart disease. Here, we review the current therapeutic options for inflammatory cardiomyopathy, and delineate potential future treatment approaches from the most recent mechanistic insights given by the experimental autoimmune myocarditis model
Heart-infiltrating prominin-1+/CD133+ progenitor cells represent the cellular source of transforming growth factor beta-mediated cardiac fibrosis in experimental autoimmune myocarditis
RATIONALE: Myocardial fibrosis is a hallmark of inflammation-triggered end-stage heart disease, a common cause of heart failure in young patients. OBJECTIVE: We used CD4(+) T-cell-mediated experimental autoimmune myocarditis model to determine the parameters regulating cardiac fibrosis in inflammatory heart disease. METHODS AND RESULTS: alpha-Myosin heavy chain peptide/complete Freund's adjuvant immunization was used to induce experimental autoimmune myocarditis in BALB/c mice. Chimeric mice, reconstituted with enhanced green fluorescence protein (EGFP)(+) bone marrow, were used to track the fate of inflammatory cells. Prominin-1(+) cells were isolated from the inflamed hearts, cultured in vitro and injected intracardially at different stages of experimental autoimmune myocarditis. Transforming growth factor (TGF)-beta-mediated fibrosis was addressed using anti-TGF-beta antibody treatment. Myocarditis peaked 21 days after immunization and numbers of cardiac fibroblasts progressively increased on follow-up. In chimeric mice, >60% of cardiac fibroblasts were EGFP(+) 46 days after immunization. At day 21, cardiac infiltrates contained approximately 30% of prominin-1(+) progenitors. In vitro and in vivo experiments confirmed that prominin-1(+) but not prominin-1(-) cells isolated from acutely inflamed hearts represented the cellular source of cardiac fibroblasts at late stages of disease, characterized by increased TGF-beta levels within the myocardium. Mechanistically, the in vitro differentiation of heart-infiltrating prominin-1(+) cells into fibroblasts depended on TGF-beta-mediated phosphorylation of Smad proteins. Accordingly, anti-TGF-beta antibody treatment prevented myocardial fibrosis in immunized mice. CONCLUSIONS: Taken together, heart-infiltrating prominin-1(+) progenitors are the major source of subsequent TGF-beta-triggered cardiac fibrosis in experimental autoimmune myocarditis. Recognizing the critical, cytokine-dependent role of bone marrow-derived progenitors in cardiac remodeling might result in novel treatment concepts against inflammatory heart failure
- …