3,562 research outputs found

    Propuesta de un plan de control para la exposición a ambientes laborales contaminados con vapores orgánicos en una fábrica de pinturas.

    Get PDF
    Este documento contiene archivo en PDF.Los disolventes orgánicos constituyen uno de los principales factores de riesgos en la industria de fabricación de pinturas, ya que la volatilidad de estos productos origina el riesgo de inhalación de vapores orgánicos en las áreas donde se manipulan estos disolventes; además, de un potencial riesgo de incendios durante la manipulación, transporte o almacenamiento de estos productos químicos, los cuales son por naturaleza altamente combustibles. En el presente estudio se busca garantizar la minimización de los riesgos químicos por inhalación de Compuestos Orgánicos Volátiles (COV) en una fábrica de pinturas, a través de la identificación de las situaciones de exposición a vapores orgánicos, medición y evaluación del riesgo tanto cualitativa como cuantitativa, y una propuesta de control que incluye vigilancia ambiental en las áreas que existen procesos donde se manipulan COV, el establecimiento de controles operacionales en los puestos de trabajo donde existe exposición, y mecanismos de vigilancia biológica sobre aquellas personas potencialmente sobre expuestas a estos productos químicos.The organic solvents are a major risk factor in the manufacturing of paints, because the volatility of these products results in a risk of inhalation of organic vapors in the areas where these solvents are handled; also there is a potential fire hazard during handling, transportation or storage of these chemicals, which are by nature highly combustible. The present study seeks to ensure the minimization of chemical risks from inhalation of volatile organic compounds (VOCs) in a paint manufacturing facility, through the identification of situations for exposure to organic vapors, cualitative and cuantitative risk measurement and evaluation, and a proposal for operational controls that include a monitoring of the work environment in the areas where VOCs are handled, the establishment of operational controls and biological monitoring mechanisms for workers who are potentially exposed to these chemicals

    Suzaku X-ray Spectra and Pulse Profile Variations during the Superorbital Cycle of LMC X-4

    Full text link
    We present results from spectral and temporal analyses of Suzaku and RXTE observations of the high mass X-ray binary LMC X-4. Using the full 13 years of available RXTE/ASM data, we apply the ANOVA and Lomb normalized Periodogram methods to obtain an improved superorbital period measurement of 30.32 +/- 0.04 days. The phase-averaged X-ray spectra from Suzaku observations during the high state of the superorbital period can be modeled in the 0.6--50 keV band as the combination of a power-law with Gamma ~ 0.6 and a high-energy cutoff at ~ 25 keV, a blackbody with kT_BB ~ 0.18 keV, and emission lines from Fe K_alpha, O VIII, and Ne IX (X Lyalpha). Assuming a distance of 50 kpc, The source has luminosity L_X ~ 3 x 10^38 ergs s^-1 in the 2--50 keV band, and the luminosity of the soft (blackbody) component is L_BB ~ 1.5 x 10^37 ergs s^-1. The energy resolved pulse profiles show single-peaked soft (0.5-1 keV) and hard (6-10 keV) pulses but a more complex pattern of medium (2-10 keV) pulses; cross-correlation of the hard with the soft pulses shows a phase shift that varies between observations. We interpret these results in terms of a picture in which a precessing disk reprocesses the hard X-rays and produces the observed soft spectral component, as has been suggested for the similar sources Her X-1 and SMC X-1.Comment: 13 emulateapj pages, 11 figures, 4 tables; accepted for publication in Ap

    The structural distortion in antiferromagnetic LaFeAsO investigated by a group-theoretical approach

    Full text link
    As experimentally well established, undoped LaFeAsO is antiferromagnetic below 137K with the magnetic moments lying on the Fe sites. We determine the orthorhombic body-centered group Imma (74) as the space group of the experimentally observed magnetic structure in the undistorted lattice, i.e., in a lattice possessing no structural distortions in addition to the magnetostriction. We show that LaFeAsO possesses a partly filled "magnetic band" with Bloch functions that can be unitarily transformed into optimally localized Wannier functions adapted to the space group Imma. This finding is interpreted in the framework of a nonadiabatic extension of the Heisenberg model of magnetism, the nonadiabatic Heisenberg model. Within this model, however, the magnetic structure with the space group Imma is not stable but can be stabilized by a (slight) distortion of the crystal turning the space group Imma into the space group Pnn2 (34). This group-theoretical result is in accordance with the experimentally observed displacements of the Fe and O atoms in LaFeAsO as reported by Clarina de la Cruz et al. [nature 453, 899 (2008)]

    LFI 30 and 44 GHz receivers Back-End Modules

    Full text link
    The 30 and 44 GHz Back End Modules (BEM) for the Planck Low Frequency Instrument are broadband receivers (20% relative bandwidth) working at room temperature. The signals coming from the Front End Module are amplified, band pass filtered and finally converted to DC by a detector diode. Each receiver has two identical branches following the differential scheme of the Planck radiometers. The BEM design is based on MMIC Low Noise Amplifiers using GaAs P-HEMT devices, microstrip filters and Schottky diode detectors. Their manufacturing development has included elegant breadboard prototypes and finally qualification and flight model units. Electrical, mechanical and environmental tests were carried out for the characterization and verification of the manufactured BEMs. A description of the 30 and 44 GHz Back End Modules of Planck-LFI radiometers is given, with details of the tests done to determine their electrical and environmental performances. The electrical performances of the 30 and 44 GHz Back End Modules: frequency response, effective bandwidth, equivalent noise temperature, 1/f noise and linearity are presented

    The reason why doping causes superconductivity in LaFeAsO

    Full text link
    The experimental observation of superconductivity in LaFeAsO appearing on doping is analyzed with the group-theoretical approach that evidently led in a foregoing paper (J. Supercond 24:2103, 2011) to an understanding of the cause of both the antiferromagnetic state and the accompanying structural distortion in this material. Doping, like the structural distortions, means also a reduction of the symmetry of the pure perfect crystal. In the present paper we show that this reduction modifies the correlated motion of the electrons in a special narrow half-filled band of LaFeAsO in such a way that these electrons produce a stable superconducting state

    The AFLOW Fleet for Materials Discovery

    Full text link
    The traditional paradigm for materials discovery has been recently expanded to incorporate substantial data driven research. With the intent to accelerate the development and the deployment of new technologies, the AFLOW Fleet for computational materials design automates high-throughput first principles calculations, and provides tools for data verification and dissemination for a broad community of users. AFLOW incorporates different computational modules to robustly determine thermodynamic stability, electronic band structures, vibrational dispersions, thermo-mechanical properties and more. The AFLOW data repository is publicly accessible online at aflow.org, with more than 1.7 million materials entries and a panoply of queryable computed properties. Tools to programmatically search and process the data, as well as to perform online machine learning predictions, are also available.Comment: 14 pages, 8 figure

    On the accumulation of planetesimals near disc gaps created by protoplanets

    Full text link
    We have performed three-dimensional two-fluid (gas-dust) hydrodynamical models of circumstellar discs with embedded protoplanets (3 - 333 M\oplu) and small solid bodies (radii 10cm to 10m). We find that high mass planets (\gtrsim Saturn mass) open sufficiently deep gaps in the gas disc such that the density maximum at the outer edge of the gap can very efficiently trap metre-sized solid bodies. This allows the accumulation of solids at the outer edge of the gap as solids from large radii spiral inwards to the trapping region. This process of accumulation occurs fastest for those bodies that spiral inwards most rapidly, typically metre-sized boulders, whilst smaller and larger objects will not migrate sufficiently rapidly in the discs lifetime to benefit from the process. Around a Jupiter mass planet we find that bound clumps of solid material, as large as several Earth masses, may form, potentially collapsing under self-gravity to form planets or planetesimals. These results are in agreement with Lyra et al. (2009), supporting their finding that the formation of a second generation of planetesimals or of terrestrial mass planets may be triggered by the presence of a high mass planet.Comment: 14 pages, 10 figures. Accepted for publication in MNRA

    The STAR Time Projection Chamber: A Unique Tool for Studying High Multiplicity Events at RHIC

    Full text link
    The STAR Time Projection Chamber (TPC) is used to record collisions at the Relativistic Heavy Ion Collider (RHIC). The TPC is the central element in a suite of detectors that surrounds the interaction vertex. The TPC provides complete coverage around the beam-line, and provides complete tracking for charged particles within +- 1.8 units of pseudo-rapidity of the center-of-mass frame. Charged particles with momenta greater than 100 MeV/c are recorded. Multiplicities in excess of 3,000 tracks per event are routinely reconstructed in the software. The TPC measures 4 m in diameter by 4.2 m long, making it the largest TPC in the world.Comment: 28 pages, 11 figure

    Chiral U(1) flavor models and flavored Higgs doublets: the top FB asymmetry and the Wjj

    Full text link
    We present U(1) flavor models for leptophobic Z' with flavor dependent couplings to the right-handed up-type quarks in the Standard Model, which can accommodate the recent data on the top forward-backward (FB) asymmetry and the dijet resonance associated with a W boson reported by CDF Collaboration. Such flavor-dependent leptophobic charge assignments generally require extra chiral fermions for anomaly cancellation. Also the chiral nature of U(1)' flavor symmetry calls for new U(1)'-charged Higgs doublets in order for the SM fermions to have realistic renormalizable Yukawa couplings. The stringent constraints from the top FB asymmetry at the Tevatron and the same sign top pair production at the LHC can be evaded due to contributions of the extra Higgs doublets. We also show that the extension could realize cold dark matter candidates.Comment: 40 pages, 10 figures, added 1 figure and extended discussion, accepted for publication in JHE
    corecore