12,464 research outputs found

    Numerical simulation of viscous supersonic flow over a generic fighter configuration

    Get PDF
    A procedure is presented, as well as some results, to calculate the flow over a generic fighter configuration. A parabolized marching Navier-Stokes code is used to obtain the solution over a wing-canopy body. The flow conditions simulate supersonic cruise with a freestream Mach number of 2.169 and angles of attack of 4 and 10 deg. The body surface is considered to be an adiabatic wall and the flow is assumed to be turbulent for the given Reynolds number

    A Comparative Review of Dimension Reduction Methods in Approximate Bayesian Computation

    Get PDF
    Approximate Bayesian computation (ABC) methods make use of comparisons between simulated and observed summary statistics to overcome the problem of computationally intractable likelihood functions. As the practical implementation of ABC requires computations based on vectors of summary statistics, rather than full data sets, a central question is how to derive low-dimensional summary statistics from the observed data with minimal loss of information. In this article we provide a comprehensive review and comparison of the performance of the principal methods of dimension reduction proposed in the ABC literature. The methods are split into three nonmutually exclusive classes consisting of best subset selection methods, projection techniques and regularization. In addition, we introduce two new methods of dimension reduction. The first is a best subset selection method based on Akaike and Bayesian information criteria, and the second uses ridge regression as a regularization procedure. We illustrate the performance of these dimension reduction techniques through the analysis of three challenging models and data sets.Comment: Published in at http://dx.doi.org/10.1214/12-STS406 the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    The Wandering Exponent of a One-Dimensional Directed Polymer in a Random Potential with Finite Correlation Radius

    Full text link
    We consider a one-dimensional directed polymer in a random potential which is characterized by the Gaussian statistics with the finite size local correlations. It is shown that the well-known Kardar's solution obtained originally for a directed polymer with delta-correlated random potential can be applied for the description of the present system only in the high-temperature limit. For the low temperature limit we have obtained the new solution which is described by the one-step replica symmetry breaking. For the mean square deviation of the directed polymer of the linear size L it provides the usual scaling L2zL^{2z} with the wandering exponent z = 2/3 and the temperature-independent prefactor.Comment: 14 pages, Late

    Polarization and angular distribution of the radiation emitted in laser-assisted recombination

    Full text link
    The effect of an intense external linear polarized radiation field on the angular distributions and polarization states of the photons emitted during the radiative recombination is investigated. It is predicted, on symmetry grounds, and corroborated by numerical calculations of approximate recombination rates, that emission of elliptically polarized photons occurs when the momentum of the electron beam is not aligned to the direction of the oscillating field. Moreover, strong modifications to the angular distributions of the emitted photons are induced by the external radiation field.Comment: 5 pages, 3 figure

    Non-perturbative Renormalisation of Domain Wall Fermions: Quark Bilinears

    Full text link
    We find the renormalisation coefficients of the quark field and the flavour non-singlet fermion bilinear operators for the domain wall fermion action, in the regularisation independent (RI) renormalisation scheme. Our results are from a quenched simulation, on a 16^3x32 lattice, with beta=6.0 and an extent in the fifth dimension of 16. We also discuss the expected effects of the residual chiral symmetry breaking inherent in a domain wall fermion simulation with a finite fifth dimension, and study the evidence for both explicit and spontaneous chiral symmetry breaking effects in our numerical results. We find that the relations between different renormalisation factors predicted by chiral symmetry are, to a good approximation, satisfied by our results and that systematic effects due to the (low energy) spontaneous chiral symmetry breaking and zero-modes can be controlled. Our results are compared against the perturbative predictions for both their absolute value and renormalisation scale dependence.Comment: 53 pages, 21 figures, revte
    • …
    corecore