research

The Wandering Exponent of a One-Dimensional Directed Polymer in a Random Potential with Finite Correlation Radius

Abstract

We consider a one-dimensional directed polymer in a random potential which is characterized by the Gaussian statistics with the finite size local correlations. It is shown that the well-known Kardar's solution obtained originally for a directed polymer with delta-correlated random potential can be applied for the description of the present system only in the high-temperature limit. For the low temperature limit we have obtained the new solution which is described by the one-step replica symmetry breaking. For the mean square deviation of the directed polymer of the linear size L it provides the usual scaling L2zL^{2z} with the wandering exponent z = 2/3 and the temperature-independent prefactor.Comment: 14 pages, Late

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 11/12/2019