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INTRODUCTION 

In the next generatlon of fighter alrcraft, the misslon requlrements 
dictate a versatile vehicle that can operate over a wide range of condi
tlons. One requirement is likely to be a supersonic cruise capability. In 
addition, the vehicle will need to be able to malntain lts maneuverability 
as well as ltS low-speed characteristics. To provide this capability in 
such an aircraft, devices such as close-coupled canards and vortex control 
are being considered. 

In an effort to address the impact of these technologies, a computa
tional tool is being developed by NASA Ames Research Center and the Soelng 
Military Airplane Company (BMAC). An example of the alrcraft belng consid
ered for this development is shown in Fig. 1. It is designed to crUlse at 
Mach 2. Since there has been extensive wind tunnel testing of thlS config
uration [1], sufficient data eXlst for verification of the computer code. 
Thus, the basic intent of this lnvestigation is to develop a computatlonal 
fluld dynamlcs (CFD) tool that is ~apable of analyzing the V1SCOUS super
sonic flow about these realistic configurations. To meet thlS challenge, a 
technique is being developed to predict the entire flow field about the 
configuration, includlng difficult flow regions near canopy, wlng, and 
canards. The prediction technique must yield a physlcally meanlngful solu
tion when flow phenomena such as the interaction of the canard vortex and 
wlng occur. Vortex bursting, which causes both unsteady flow and aXlal 
separated flow, is likely to occur in such a configuratlon and invalidate 
the numerical marching procedure. In such instances, a time-dependent 
Navier-Stokes code will be used to solve the problem of the interactlng 
flows over the wings. 

In this paper, the only results presented are those for the supersonic 
flow over the wlng-canopy body shown in Fig. 1. A viscous numerlcal-space 
marchlng procedure (the NASA Ames Parabolized Navier-Stokes (PNS) code 
[2-5]) was employed to compute these flows. The flow condltions Slmulate 
supersonic cruise with a freestream Mach number of 2.169 and angles of 
attack of 40 and 100. The body surface was considered to be an adiabatlc 
wall and the flow was assumed to be turbulent for the given Reynolds 
number. 

COMPUTATIONAL TECHNIQUE 

The PNS equations are obtained from the complete Navier-Stokes equa
tions by neglecting the unsteady terms and the streamwlse-viscous deriva
tive terms (see [2]). 



In the present formulation, ~ (the marching directlon In computatlonal 
space) is a function of X only (this implies aXls-normal marching 
planes). The governlng equations are hyperbollc-parabolic In the ~-dlrec
tion if the inviscld part of the flow field lS supersonlc, If there lS no 
streamwlse (axial) separation, and if the pressure grad lent ln the VlSCOUS 
region near the wall is treated correctly [2]. However, the PNS system of 
equations still permlts separat10n 1n the crossflow plane (n - ~). 

The present PNS code uses the Beam-Warmlng impllClt algorlthm to solve 
the parabolized approxlmation to the Navier-Stokes equatlons and character
lstic, impllclt, spatlally second-order-accurate boundary condltlons at the 
outermost shock wave. An eillptlc grid generator of the type developed by 
Steger and Sorenson [6], WhlCh is further specialized to wlng bodles by Ral 
et al. [3], is used to generate the grld for the calculations. The alge
braic turbulence model was developed by Baldwln and Lomax [7]. At the body 
surface, the VlSCOUS no-sllp boundary condltlon is applled. Slnce the· 
equations are cast 1n conservat1on-law form, all d1scontlnu1tles wlth1n the 
flow domaln are predlcted correctly. 

To initiate the marching procedure, a starting plane (or planes) of 
data lS requ1red. This init1al solution is obtalned as follows: A shock 
location is obtalned from the configuratlon and flow condltlons, and the 
flow properties on the surface are obtalned from NACA 1135 for a reglon 
near the nose of the vehicle. These propertles are used to estimate the 
flow in the shock layer. Since this estlmated flow field was obtalned very 
near the nose tlP, a viscous solution can be generated as the PNS code 
marches downstream by uSlng very small march1ng steps. If thls procedure 
lS followed, a reasonable start1ng plane lS obtained wlthout expend1ng a 
large amount of computer tlme. Also, the rema1nlng flow fleld over the 
vehicle is largely unaffected because It lS near the nose. 

RESULTS 

Numerlcal results for supersonlC cruise at M~ = 2.169 are presented. 
The wind tunnel condltions considered are such that the Reynolds number is 
turbulent. Adlabatlc wall cond1tlons are assumed at the body's surface. 
Angles of attack of 4° and 10° are cons1dered. The absence of yaw results 
ln a pitch plane of symmetry WhlCh reduces the computatlonal space and 
hence the amount of central processlng unit (CPU) time and storage require
ments. The current geometry, conslstlng of a canopy, body, and w1ng, lS ln 
a form that is read1ly usable by the PNS code. The pOlnt dlstribution on 
each cross section was determined lndependently and was then used to pro
duce a geometry file which was read into the PNS code. Intermed1ate cross 
sections were determlned by simple lnterpolation 1n the aXlal d1reactlon. 
All of the figures are scaled by elther the model length (L), [Flg. 1], or 
the local span wldth (b). The locations of some of the referenced cross 
sections are shown ln Fig. 1. 

A tYP1cal grid obtained by uSlng the elilptic mesh generator lS pre
sented in Fig. 2. The outermost boundary is the locatlon of the fitted bow 
shock. ThlS particular grid has 61 meridlonal pOlnts and 45 radlal pOlnts. 

Figures 3 and 4 
study used 45 radial 
61, 91, and 121 for 
results. The coarse 

are mesh studies for two different X/L statlons. Each 
pOints, but varied the number of meridional pOlnts: 
a = 4°. The results were compared wlth experlmental 
details of the flow field were reasonably resolved by 
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all systems; however, for the X/t = 0.8 station it appears that the 
121 X 45 grid system produces the more accurate overall results. 

Compar1sons between experimental and computational values of Cp at 
a = 10° for dIfferent X-statIons are presented in F1gs. 5, 6, and 7. The 
agreement at all of the X-stations,--X/L = 0.575, 0.71, and 0.8--13 very 
good. The distribut10n of grid pOInts on the body surface at each of these 
stations is represented by the symbols on each cross-sect1onal plot. 

In Fig. 8, a compar1son between the experiment and computat1onal pitot 
pressures at three mer1dional locations for an X/t = 0.65 is shown. The 
comparison shows very good agreement through the shock layer for the exper
imental data surveys that were normal to the fuselage surface. There is a 
small d1fference for each of the surveys normal to the w1ng surface, which 
1S most probably a result of the nonoptimal distr1but1on of computat1onal 
gr1d p01nts 1n the v1c1n1ty of the w1ng-fuselage junct1on. 

The pressure contours are presented in Fig. 9 at an X/t = 0.672 
and a = 4°. The contours show a rap1d expans10n around the w1ngt1p fol
lowed by a recompress1on. 

The crossflow veloc1ty vectors are presented for a = 10° at an 
X/t = 0.8 in Fig. 10. Every third meridional value is plotted to enable 
an unobstructed V1ew of the flow phYS1CS. Again, the rap1d expans10n 
around the lead1ng edge is visible. At this higher angle of attack, a 
recirculation region eXIsts on the upper surface of the w1ng. Along the 
leeward rad1al ray, the downstream effect of the expans10n fan which was 
created by the canopy protruding into the oncom1ng flow 1S clearly v1s1ble. 
This 1S shown by the change 1n d1rect1on of the veloc1ty vectors. 

SUMMARY 

Results are presented for supersonic flow about a wing-canopy body 
configurat1on. The thin-layer Navier-Stokes equations were marched over 
th1S configuration, Y1elding numerical results Wh1Ch agreed well with the 
experiment. Th1S procedure is computationally eff1c1ent, reasonably 
robust, and can be a v1able tool to invest1gate the aerodynam1cs and the 
fluid phYS1CS of supersonic flow past complex, w1nged conf1gurat1ons. In 
the future, the canard effects on the flow field will be stud1ed by the 
present procedure or by a time-dependent procedure. 
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Fig 1 Geometry of a generic supercruise fighter 
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Fig 2 Elliptic grid at X/L. 0 672 and Q = 4° 
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Fig 3 Hesh effects at X/L = 0 575 and ~ = 4° 
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Flg 5 Pressure coefficient comparisons at X/L • 0 575 and 
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Fig. 6 Pressure coefficient comparisons at X/L. 0.710 and 
" 10· for a 61-polnt grid 
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