6 research outputs found

    Heterogeneity of luminal breast cancer characterised by immunohistochemical expression of basal markers

    Get PDF
    Background: Luminal A breast cancer defined as hormone receptor positive and human epidermal growth factor receptor 2 (HER2) negative is known to be heterogeneous. Previous study showed that luminal A tumours with the expression of basal markers ((cytokeratin (CK) 5 or CK5/6) or epidermal growth factor receptor (EGFR)) were associated with poorer prognosis compared with those that stained negative for basal markers. Prompted by this study, we assessed whether tumour characteristics and risk factors differed by basal marker status within luminal A tumours. Methods: We pooled 5040 luminal A cases defined by immunohistochemistry (4490 basal-negative ((CK5 (or CK5/6))− and EGFR−) and 550 basal-positive ((CK5 (or CK5/6+)) or EGFR+)) from eight studies participating in the Breast Cancer Association Consortium. Case–case comparison was performed using unconditional logistic regression. Results: Tumour characteristics and risk factors did not vary significantly by the expression of basal markers, although results suggested that basal-positive luminal tumours tended to be smaller and node negative, and were more common in women with a positive family history and lower body mass index. Conclusions: Most established breast cancer risk factors were similar in basal-positive and basal-negative luminal A tumours. The non-significant but suggestive differences in tumour features and family history warrant further investigations

    Crowdsourcing the General Public for Large Scale Molecular Pathology Studies in Cancer

    Get PDF
    Background: Citizen science, scientific research conducted by non-specialists, has the potential to facilitate biomedical research using available large-scale data, however validating the results is challenging. The Cell Slider is a citizen science project that intends to share images from tumors with the general public, enabling them to score tumor markers independently through an internet-based interface. Methods: From October 2012 to June 2014, 98,293 Citizen Scientists accessed the Cell Slider web page and scored 180,172 sub-images derived from images of 12,326 tissue microarray cores labeled for estrogen receptor (ER). We evaluated the accuracy of Citizen Scientist's ER classification, and the association between ER status and prognosis by comparing their test performance against trained pathologists. Findings: The area under ROC curve was 0.95 (95% CI 0.94 to 0.96) for cancer cell identification and 0.97 (95% CI 0.96 to 0.97) for ER status. ER positive tumors scored by Citizen Scientists were associated with survival in a similar way to that scored by trained pathologists. Survival probability at 15 years were 0.78 (95% CI 0.76 to 0.80) for ER-positive and 0.72 (95% CI 0.68 to 0.77) for ER-negative tumors based on Citizen Scientists classification. Based on pathologist classification, survival probability was 0.79 (95% CI 0.77 to 0.81) for ER-positive and 0.71 (95% CI 0.67 to 0.74) for ER-negative tumors. The hazard ratio for death was 0.26 (95% CI 0.18 to 0.37) at diagnosis and became greater than one after 6.5 years of follow-up for ER scored by Citizen Scientists, and 0.24 (95% CI 0.18 to 0.33) at diagnosis increasing thereafter to one after 6.7 (95% CI 4.1 to 10.9) years of follow-up for ER scored by pathologists. Interpretation: Crowdsourcing of the general public to classify cancer pathology data for research is viable, engages the public and provides accurate ER data. Crowdsourced classification of research data may offer a valid solution to problems of throughput requiring human input

    Incorporating progesterone receptor expression into the PREDICT breast prognostic model

    No full text
    Background: Predict Breast (www.predict.nhs.uk) is an online prognostication and treatment benefit tool for early invasive breast cancer. The aim of this study was to incorporate the prognostic effect of progesterone receptor (PR) status into a new version of PREDICT and to compare its performance to the current version (2.2).Method: The prognostic effect of PR status was based on the analysis of data from 45,088 European patients with breast cancer from 49 studies in the Breast Cancer Association Consortium. Cox proportional hazard models were used to estimate the hazard ratio for PR status. Data from a New Zealand study of 11,365 patients with early invasive breast cancer were used for external validation. Model calibration and discrimination were used to test the model performance.Results: Having a PR-positive tumour was associated with a 23% and 28% lower risk of dying from breast cancer for women with oestrogen receptor (ER)-negative and ER-positive breast cancer, respectively. The area under the ROC curve increased with the addition of PR status from 0.807 to 0.809 for patients with ER-negative tumours (p = 0.023) and from 0.898 to 0. 902 for patients with ER-positive tumours (p = 2.3 x 10(-6)) in the New Zealand cohort. Model calibration was modest with 940 observed deaths compared to 1151 predicted.Conclusion: The inclusion of the prognostic effect of PR status to PREDICT Breast has led to an improvement of model performance and more accurate absolute treatment benefit predic-tions for individual patients. Further studies should determine whether the baseline hazard function requires recalibration. (C) 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).MTG1 - Moleculaire genetica en pathologie van borstkankerMolecular tumour pathology - and tumour genetic

    Parthenolide and its Analogues: A New Potential Strategy for the Treatment of Triple-Negative Breast Tumors

    No full text

    Lasers

    No full text
    corecore