2,866 research outputs found

    Wellness Wednesday: Monitoring Lifestyle Changes Via the Transtheoretical Model

    Get PDF
    Physical activity has been shown to improve cognition, functional and overall health indicators across the lifespan. Older adults are less likely to participate in physical due to barriers and risk related factors. Additionally, lower income, underserved populations experience added barriers as well. Interventions addressing negative health behaviors in these populations have rarely been implemented. PURPOSE: Using the Transtheoretical Model (TTM) behavior change theory, the purpose of this study was to determine if five, monthly educational and exercise classes targeting these populations will improve motivation levels and result in facilitating increases in physical activity levels. METHODS: One validated TTM survey was completed upon the first month’s visit. Through the following months, group exercises and educational materials were prepared according to a monthly theme. Three different locations received the two hour interventions each month for four months. During the last month’s meeting, the same surveys will be completed and used to compare the pre and post measurements of the participants. RESULTS: The results of this study showed that there were no significant differences in between pre and post survey data, (p = 0.09) However, none of the participants regressed to previous stages of change. CONCLUSION: The positive results of this study will be used to re-evaluate the Wellness Wednesday program and adjust strategies to enable continued participant engagement and adherence to recommended physical activity guidelines. Results suggest that programming appears to be successful with the small sample size evaluated in this study

    The decay of optical emission from the Gamma-Ray Burst GRB 970228

    Get PDF
    We present the R_c band light curve of the optical transient (OT) associated with GRB970228, based on re-evaluation of existing photometry. Data obtained until April 1997 suggested a slowing down of the decay of the optical brightness. However, the HST observations in September 1997 show that the light curve of the point source is well represented by a single power law, with a ``dip'', about a week after the burst occured. The exponent of the power law decay is Ξ±\alpha = --1.10 Β±\pm 0.04. As the point source weakened it also became redder.Comment: 5 pages, latex, to appear in Gamma-Ray Bursts, 4-th Huntsville Symposium, eds Meegan, Preece, Koshu

    Approximation of the critical buckling factor for composite panels

    Get PDF
    This article is concerned with the approximation of the critical buckling factor for thin composite plates. A new method to improve the approximation of this critical factor is applied based on its behavior with respect to lamination parameters and loading conditions. This method allows accurate approximation of the critical buckling factor for non-orthotropic laminates under complex combined loadings (including shear loading). The influence of the stacking sequence and loading conditions is extensively studied as well as properties of the critical buckling factor behavior (e.g concavity over tensor D or out-of-plane lamination parameters). Moreover, the critical buckling factor is numerically shown to be piecewise linear for orthotropic laminates under combined loading whenever shear remains low and it is also shown to be piecewise continuous in the general case. Based on the numerically observed behavior, a new scheme for the approximation is applied that separates each buckling mode and builds linear, polynomial or rational regressions for each mode. Results of this approach and applications to structural optimization are presented

    Inferring stabilizing mutations from protein phylogenies : application to influenza hemagglutinin

    Get PDF
    One selection pressure shaping sequence evolution is the requirement that a protein fold with sufficient stability to perform its biological functions. We present a conceptual framework that explains how this requirement causes the probability that a particular amino acid mutation is fixed during evolution to depend on its effect on protein stability. We mathematically formalize this framework to develop a Bayesian approach for inferring the stability effects of individual mutations from homologous protein sequences of known phylogeny. This approach is able to predict published experimentally measured mutational stability effects (ΔΔG values) with an accuracy that exceeds both a state-of-the-art physicochemical modeling program and the sequence-based consensus approach. As a further test, we use our phylogenetic inference approach to predict stabilizing mutations to influenza hemagglutinin. We introduce these mutations into a temperature-sensitive influenza virus with a defect in its hemagglutinin gene and experimentally demonstrate that some of the mutations allow the virus to grow at higher temperatures. Our work therefore describes a powerful new approach for predicting stabilizing mutations that can be successfully applied even to large, complex proteins such as hemagglutinin. This approach also makes a mathematical link between phylogenetics and experimentally measurable protein properties, potentially paving the way for more accurate analyses of molecular evolution

    Assessment of low-dose cisplatin as a model of nausea and emesis in beagle dogs, potential for repeated administration

    Get PDF
    Cisplatin is a highly emetogenic cancer chemotherapy agent, which is often used to induce nausea and emesis in animal models. The cytotoxic properties of cisplatin also cause adverse events that negatively impact on animal welfare preventing repeated administration of cisplatin. In this study, we assessed whether a low (subclinical) dose of cisplatin could be utilized as a model of nausea and emesis in the dog while decreasing the severity of adverse events to allow repeated administration. The emetic, nausea-like behavior and potential biomarker response to both the clinical dose (70 mg/m2) and low dose (15 mg/m2) of cisplatin was assessed. Plasma creatinine concentrations and granulocyte counts were used to assess adverse effects on the kidneys and bone marrow, respectively. Nausea-like behavior and emesis was induced by both doses of cisplatin, but the latency to onset was greater in the low-dose group. No significant change in plasma creatinine was detected for either dose groups. Granulocytes were significantly reduced compared with baseline (P = 0.000) following the clinical, but not the low-dose cisplatin group. Tolerability of repeated administration was assessed with 4 administrations of an 18 mg/m2 dose cisplatin. Plasma creatinine did not change significantly. Cumulative effects on the granulocytes occurred, they were significantly decreased (P = 0.03) from baseline at 3 weeks following cisplatin for the 4th administration only. Our results suggest that subclinical doses (15 and 18 mg/m2) of cisplatin induce nausea-like behavior and emesis but have reduced adverse effects compared with the clinical dose allowing for repeated administration in crossover studies

    Bright X-ray radiation from plasma bubbles in an evolving laser wakefield accelerator

    No full text
    We show that the properties of the electron beam and bright X-rays produced by a laser wakefield accelerator can be predicted if the distance over which the laser self-focuses and compresses prior to self-injection is taken into account. A model based on oscillations of the beam inside a plasma bubble shows that performance is optimised when the plasma length is matched to the laser depletion length. With a 200~TW laser pulse this results in an X-ray beam with median photon energy of 20 keV, >109> 10^{9} photons per shot and a peak brightness of 4Γ—10234 \times 10^{23} photons sβˆ’1^{-1} mradβˆ’2^{-2} mmβˆ’2^{-2} (0.1 % BW)βˆ’1^{-1}

    Self-injection threshold in self-guided laser wakefield accelerators

    Get PDF
    A laser pulse traveling through a plasma can excite large amplitude plasma waves that can be used to accelerate relativistic electron beams in a very short distanceβ€”a technique called laser wakefield acceleration. Many wakefield acceleration experiments rely on the process of wave breaking, or self-injection, to inject electrons into the wave, while other injection techniques rely on operation without self-injection. We present an experimental study into the parameters, including the pulse energy, focal spot quality, and pulse power, that determine whether or not a wakefield accelerator will self-inject. By taking into account the processes of self-focusing and pulse compression we are able to extend a previously described theoretical model, where the minimum bubble size k p r b required for trapping is not constant but varies slowly with density and find excellent agreement with this model

    The inner centromere is a biomolecular condensate scaffolded by the chromosomal passenger complex.

    Get PDF
    The inner centromere is a region on every mitotic chromosome that enables specific biochemical reactions that underlie properties, such as the maintenance of cohesion, the regulation of kinetochores and the assembly of specialized chromatin, that can resist microtubule pulling forces. The chromosomal passenger complex (CPC) is abundantly localized to the inner centromeres and it is unclear whether it is involved in non-kinase activities that contribute to the generation of these unique chromatin properties. We find that the borealin subunit of the CPC drives phase separation of the CPC in vitro at concentrations that are below those found on the inner centromere. We also provide strong evidence that the CPC exists in a phase-separated state at the inner centromere. CPC phase separation is required for its inner-centromere localization and function during mitosis. We suggest that the CPC combines phase separation, kinase and histone code-reading activities to enable the formation of a chromatin body with unique biochemical activities at the inner centromere
    • …
    corecore