14 research outputs found

    Photon correlations in the collective emission of hybrid gold-(CdSe/CdS/CdZnS) nanocrystal supraparticles

    Full text link
    We investigate the photon statistics of the light emitted by single self-assembled hybrid gold-CdSe/CdS/CdZnS colloidal nanocrystal supraparticles through the detailed analysis of the intensity autocorrelation function g(2)(τ)g^{(2)}(\tau). We first reveal that, despite the large number of nanocrystals involved in the supraparticle emission, antibunching can be observed. We then present a model based on non-coherent F\"orster energy transfer and Auger recombination that well captures photon antibunching. Finally, we demonstrate that some supraparticles exhibit a bunching effect at short time scales corresponding to coherent collective emission

    Structure and Functional Analysis of the RNA- and Viral Phosphoprotein-Binding Domain of Respiratory Syncytial Virus M2-1 Protein

    Get PDF
    Respiratory syncytial virus (RSV) protein M2-1 functions as an essential transcriptional cofactor of the viral RNA-dependent RNA polymerase (RdRp) complex by increasing polymerase processivity. M2-1 is a modular RNA binding protein that also interacts with the viral phosphoprotein P, another component of the RdRp complex. These binding properties are related to the core region of M2-1 encompassing residues S58 to K177. Here we report the NMR structure of the RSV M2-158–177 core domain, which is structurally homologous to the C-terminal domain of Ebola virus VP30, a transcription co-factor sharing functional similarity with M2-1. The partial overlap of RNA and P interaction surfaces on M2-158–177, as determined by NMR, rationalizes the previously observed competitive behavior of RNA versus P. Using site-directed mutagenesis, we identified eight residues located on these surfaces that are critical for an efficient transcription activity of the RdRp complex. Single mutations of these residues disrupted specifically either P or RNA binding to M2-1 in vitro. M2-1 recruitment to cytoplasmic inclusion bodies, which are regarded as sites of viral RNA synthesis, was impaired by mutations affecting only binding to P, but not to RNA, suggesting that M2-1 is associated to the holonucleocapsid by interacting with P. These results reveal that RNA and P binding to M2-1 can be uncoupled and that both are critical for the transcriptional antitermination function of M2-1

    Structure and Function of the Human Respiratory Syncytial Virus M2–1 Protein

    Get PDF
    Human respiratory syncytial virus (HRSV) is a non-segmented negative stranded RNA virus and is recognized as the most important viral agent of lower respiratory tract infection worldwide, responsible for up to 199,000 deaths each year. The only FDA-approved regime to prevent HRSV-mediated disease is pre-exposure administration of a humanized HRSV-specific monoclonal antibody, which although being effective, is not in widespread usage due to its cost. No HRSV vaccine exists and so there remains a strong need for alternative and complementary anti-HRSV therapies. The HRSV M2–1 protein is a transcription factor and represents an attractive target for the development of antiviral compounds, based on its essential role in the viral replication cycle. To this end, a detailed analysis of M2–1 structure and functions will aid in identifying rational targets for structure-based antiviral drug design that can be developed in future translational research. Here we present an overview of the current understanding of the structure and function of HRSV M2–1, drawing on additional information derived from its structural homologues from other related viruses

    Intracellular transport and egress of hepatitis B virus.

    No full text
    Hepatitis B virus (HBV) replicates its genomic information in the nucleus via transcription and therefore has to deliver its partially double stranded DNA genome into the nucleus. Like other viruses with a nuclear replication phase, HBV genomes are transported inside the viral capsids first through the cytoplasm towards the nuclear envelope. Following the arrival at the nuclear pore, the capsids are transported through, using classical cellular nuclear import pathways. The arrest of nuclear import at the nucleoplasmic side of the nuclear pore is unique, however, and is where the capsids efficiently disassemble leading to genome release. In the latter phase of the infection, newly formed nucleocapsids in the cytosol have to move to budding sites at intracellular membranes carrying the three viral envelope proteins. Capsids containing single stranded nucleic acid are not enveloped, in contrast to empty and double stranded DNA containing capsids. A small linear domain in the large envelope protein and two areas on the capsid surface have been mapped, where point mutations strongly block nucleocapsid envelopment. It is possible that these domains are involved in the envelope - with capsid interactions driving the budding process. Like other enveloped viruses, HBV also uses the cellular endosomal sorting complexes required for transport (ESCRT) machinery for catalyzing budding through the membrane and away from the cytosol

    First-order coherence of light emission from inhomogeneously broadened mesoscopic ensembles

    No full text
    International audienceInhomogeneous broadening is well known to hinder individual characteristics of emitters, supplanting the single-particle properties by their broader probability distribution. Here, we present an analysis of the emission spectra of mesoscopic ensembles of inhomogeneously distributed emitters below the thermodynamic limit (10 1-10 4 emitters). Based on a simple analytical model and an extensive numerical analysis, we show that the number and individual linewidths of the emitters can be directly estimated from the ensemble autocorrelation function in spite of an inhomogeneously broadened emission. As an application, we analyze the photoluminescence of colloidal nanocrystal aggregates embedded in a gold shell. Our general method can be applied to a wide range of mesoscopic many-body systems and could provide new insights into their first-order coherence properties

    Fluorescence decay enhancement and FRET inhibition in self-assembled hybrid gold CdSe/CdS/CdZnS colloidal nanocrystal supraparticles

    No full text
    International audienceWe report on the synthesis of hybrid light emitting particles with a diameter ranging between 100 and 500 nm, consisting in a compact semiconductor CdSe/CdS/CdZnS nanocrystal aggregate encapsulated by a controlled nanometric size silica and gold layers. We first characterize the Purcell decay rate enhancement corresponding to the addition of the gold nanoshell as a function of the particle size and find a good agreement with the predictions of numerical simulations. Then, we show that the contribution corresponding to Förster resonance energy transfer is inhibited

    Significance and Management of Isolated Hepatitis B Core Antibody (Anti-HBc) in HIV and HCV: Strategies in the DAA Era

    No full text
    PURPOSE OF REVIEW:The purpose of this review is to summarize the prevalence and clinical implications of the isolated anti-HBc serologic profile in HIV-infected individuals. We highlight the rare but important issue of HBV reactivation in the setting of HCV therapy and describe an approach to management. RECENT FINDINGS:The isolated anti-HBc pattern, a profile that most often indicates past exposure to HBV with waning anti-HBs immunity, is found commonly in HIV-infected individuals, particularly those with HCV. Some large cohort studies demonstrate an association with advanced liver disease, while others do not. Conversely, meta-analyses have found an association between occult HBV infection (a component of the isolated anti-HBc pattern) and advanced liver disease and hepatocellular carcinoma in HIV-uninfected individuals. In HIV-uninfected individuals with anti-HBc positivity, HBV reactivation has been reported in patients receiving HCV therapy. This phenomenon is likely the result of disinhibition of HBV with HCV eradication. In HIV-infected patients, the long-term liver outcomes associated with the isolated anti-HBc pattern remain to be fully elucidated, supporting the need for large cohort studies with longitudinal follow-up. HBV reactivation during HCV DAA therapy has been well-described in HIV-uninfected cohorts and can inform algorithms for the screening and management of the isolated anti-HBc pattern in this population

    Fine modulation of the respiratory syncytial virus M2-1 protein quaternary structure by reversible zinc removal from its Cys(3)-His(1) motif

    Get PDF
    Human respiratory syncytial virus (hRSV) is a worldwide distributed pathogen that causes respiratory disease mostly in infants and the elderly. The M2-1 protein of hRSV functions as a transcription antiterminator and partakes in virus particle budding. It is present only in Pneumovirinae, namely, Pneumovirus (RSV) and Metapneumovirus, making it an interesting target for specific antivirals. hRSV M2-1 is a tight tetramer bearing a Cys3-His1 zinc-binding motif, present in Ebola VP30 protein and some eukaryotic proteins, whose integrity was shown to be essential for protein function but without a biochemical mechanistic basis. We showed that removal of the zinc atom causes dissociation to a monomeric apo-M2-1 species. Surprisingly, the secondary structure and stability of the apo-monomer is indistinguishable from that of the M2-1 tetramer. Dissociation reported by a highly sensitive tryptophan residue is much increased at pH 5.0 compared to pH 7.0, suggesting a histidine protonation cooperating in zinc removal. The monomeric apo form binds RNA at least as well as the tetramer, and this interaction is outcompeted by the phosphoprotein P, the RNA polymerase cofactor. The role of zinc goes beyond stabilization of local structure, finely tuning dissociation to a fully folded and binding competent monomer. Removal of zinc is equivalent to the disruption of the motif by mutation, only that the former is potentially reversible in the cellular context. Thus, this process could be triggered by a natural chelator such as glutathione or thioneins, where reversibility strongly suggests a modulatory role in the participation of M2-1 in the assembly of the polymerase complex or in virion budding.Fil: Esperante, Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Noval, María Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Altieri, Tamara A.. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: de Oliveira, Guilherme A. P.. Universidade Federal Do Rio de Janeiro. Instituto de Biologia; BrasilFil: Silva, Jerson L.. Universidade Federal Do Rio de Janeiro. Instituto de Biologia; BrasilFil: de Prat Gay, Gonzalo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentin
    corecore