3,428 research outputs found

    Longitudinal Polarization at future e+ee^+e^- Colliders and Virtual New Physics Effects

    Get PDF
    The theoretical merits of longitudinal polarization asymmetries of electron-positron annihilation into two final fermions at future colliders are examined, using a recently proposed theoretical description. A number of interesting features, valid for searches of virtual effects of new physics, is underlined, that is reminiscent of analogous properties valid on top of ZZ resonance. As an application to a concrete example, we consider the case of a model with triple anomalous gauge couplings and show that the additional information provided by these asymmetries would lead to a drastic reduction of the allowed domain of the relevant parameters.Comment: 18 pages and 1 figure. e-mail: [email protected]

    The FCC-ee Interaction Region Magnet Design

    Full text link
    The design of the region close to the interaction point of the FCC-ee experiments is especially challenging. The beams collide at an angle (+-15 mrad) in the high-field region of the detector solenoid. Moreover, the very low vertical beta_y* of the machine necessitates that the final focusing quadrupoles have a distance from the IP (L*) of around 2 m and therefore are inside the main detector solenoid. The beams should be screened from the effect of the detector magnetic field, and the emittance blow-up due to vertical dispersion in the interaction region should be minimized, while leaving enough space for detector components. Crosstalk between the two final focus quadrupoles, only about 6 cm apart at the tip, should also be minimized.Comment: Poster presented at IPAC16, May 8-13, Busan, Kore

    Application of large area SiPMs for the readout of a plastic scintillator based timing detector

    Full text link
    In this study an array of eight 6 mm x 6 mm area SiPMs was coupled to the end of a long plastic scintillator counter which was exposed to a 2.5 GeV/c muon beam at the CERN PS. Timing characteristics of bars with dimensions 150 cm x 6 cm x 1 cm and 120 cm x 11 cm x 2.5 cm have been studied. An 8-channel SiPM anode readout ASIC (MUSIC R1) based on a novel low input impedance current conveyor has been used to read out and amplify SiPMs independently and sum the signals at the end. Prospects for applications in large-scale particle physics detectors with timing resolution below 100 ps are provided in light of the results

    Distance distribution in random graphs and application to networks exploration

    Full text link
    We consider the problem of determining the proportion of edges that are discovered in an Erdos-Renyi graph when one constructs all shortest paths from a given source node to all other nodes. This problem is equivalent to the one of determining the proportion of edges connecting nodes that are at identical distance from the source node. The evolution of this quantity with the probability of existence of the edges exhibits intriguing oscillatory behavior. In order to perform our analysis, we introduce a new way of computing the distribution of distances between nodes. Our method outperforms previous similar analyses and leads to estimates that coincide remarkably well with numerical simulations. It allows us to characterize the phase transitions appearing when the connectivity probability varies.Comment: 12 pages, 8 figures (18 .eps files

    Application of large area SiPMs for the readout of a plastic scintillator based timing detector

    Full text link
    In this study an array of eight 6 mm x 6 mm area SiPMs was coupled to the end of a long plastic scintillator counter which was exposed to a 2.5 GeV/c muon beam at the CERN PS. Timing characteristics of bars with dimensions 150 cm x 6 cm x 1 cm and 120 cm x 11 cm x 2.5 cm have been studied. An 8-channel SiPM anode readout ASIC (MUSIC R1) based on a novel low input impedance current conveyor has been used to read out and amplify SiPMs independently and sum the signals at the end. Prospects for applications in large-scale particle physics detectors with timing resolution below 100 ps are provided in light of the results

    A low energy neutrino factory for large θ13\theta_{13}

    Full text link
    If the value of θ13\theta_{13} is within the reach of the upcoming generation of long-baseline experiments, T2K and NOν\nuA, we show that a low-energy neutrino factory, with peak energy in the few GeV range, would provide a sensitive tool to explore CP-violation and the neutrino mass hierarchy. We consider baselines with typical length 1000--1500 km. The unique performance of the low energy neutrino factory is due to the rich neutrino oscillation pattern at energies between 1 and 4 GeV at baselines O(1000)\mathcal{O}(1000) km. We perform both a semi-analytical study of the sensitivities and a numerical analysis to explore how well this setup can measure θ13\theta_{13}, CP-violation, and determine the type of mass hierarchy and the θ23\theta_{23} quadrant. A low energy neutrino factory provides a powerful tool to resolve ambiguities and make precise parameter determinations, for both large and fairly small values of the mixing parameter θ13\theta_{13}.Comment: 15 pages, 8 figure

    Hard X-ray polarimetry with Caliste, a high performance CdTe based imaging spectrometer

    Get PDF
    Since the initial exploration of soft gamma-ray sky in the 60's, high-energy celestial sources have been mainly characterized through imaging, spectroscopy and timing analysis. Despite tremendous progress in the field, the radiation mechanisms at work in sources such as neutrons stars and black holes are still unclear. The polarization state of the radiation is an observational parameter which brings key additional information about the physical process. This is why most of the projects for the next generation of space missions covering the tens of keV to the MeV region require a polarization measurement capability. A key element enabling this capability is a detector system allowing the identification and characterization of Compton interactions as they are the main process at play. The hard X-ray imaging spectrometer module, developed in CEA with the generic name of Caliste module, is such a detector. In this paper, we present experimental results for two types of Caliste-256 modules, one based on a CdTe crystal, the other one on a CdZnTe crystal, which have been exposed to linearly polarized beams at the European Synchrotron Radiation Facility. These results, obtained at 200-300 keV, demonstrate their capability to give an accurate determination of the polarization parameters (polarization angle and fraction) of the incoming beam. Applying a selection to our data set, equivalent to select 90 degrees Compton scattered interactions in the detector plane, we find a modulation factor Q of 0.78. The polarization angle and fraction are derived with accuracies of approximately 1 degree and 5%. The modulation factor remains larger than 0.4 when essentially no selection is made at all on the data. These results prove that the Caliste-256 modules have performances allowing them to be excellent candidates as detectors with polarimetric capabilities, in particular for future space missions.Comment: 17 pages, 14 figures, 2 tables in Experimental Astronomy, 201

    Information and Discrimination from b Quark Production on Z Resonance

    Full text link
    We introduce and define operatively in a model independent way a new ``heavy" b-vertexparameter, ηb\eta_b, that can be derived from the measurement of a special polarization asymmetry for production of b-quarks on Z resonance. We show that the combination of the measurement of ηb\eta_b with that of a second and previously defined ``heavy" b-vertex parameter δbV\delta_{bV} can discriminate a number of models of New Physics that remain associated to different ``trajectories" in the plane of the variations of the two parameters. This is shown in particular for some popular SUSY and technicolor-type models. In general, this discrimination is possible if a measurement of \underline{both} parameters is performed.Comment: 22 pages, 6 figures available by air mail upon request, (e-mail [email protected] PM/94-04, UTS-DFT-94-02 .( revised version with corrected references

    Analysis of Neighbourhoods in Multi-layered Dynamic Social Networks

    Full text link
    Social networks existing among employees, customers or users of various IT systems have become one of the research areas of growing importance. A social network consists of nodes - social entities and edges linking pairs of nodes. In regular, one-layered social networks, two nodes - i.e. people are connected with a single edge whereas in the multi-layered social networks, there may be many links of different types for a pair of nodes. Nowadays data about people and their interactions, which exists in all social media, provides information about many different types of relationships within one network. Analysing this data one can obtain knowledge not only about the structure and characteristics of the network but also gain understanding about semantic of human relations. Are they direct or not? Do people tend to sustain single or multiple relations with a given person? What types of communication is the most important for them? Answers to these and more questions enable us to draw conclusions about semantic of human interactions. Unfortunately, most of the methods used for social network analysis (SNA) may be applied only to one-layered social networks. Thus, some new structural measures for multi-layered social networks are proposed in the paper, in particular: cross-layer clustering coefficient, cross-layer degree centrality and various versions of multi-layered degree centralities. Authors also investigated the dynamics of multi-layered neighbourhood for five different layers within the social network. The evaluation of the presented concepts on the real-world dataset is presented. The measures proposed in the paper may directly be used to various methods for collective classification, in which nodes are assigned to labels according to their structural input features.Comment: 16 pages, International Journal of Computational Intelligence System

    Low and High Energy Phenomenology of Quark-Lepton Complementarity Scenarios

    Full text link
    We conduct a detailed analysis of the phenomenology of two predictive see-saw scenarios leading to Quark-Lepton Complementarity. In both cases we discuss the neutrino mixing observables and their correlations, neutrinoless double beta decay and lepton flavor violating decays such as mu -> e gamma. We also comment on leptogenesis. The first scenario is disfavored on the level of one to two standard deviations, in particular due to its prediction for U_{e3}. There can be resonant leptogenesis with quasi-degenerate heavy and light neutrinos, which would imply sizable cancellations in neutrinoless double beta decay. The decays mu -> e gamma and tau -> mu gamma are typically observable unless the SUSY masses approach the TeV scale. In the second scenario leptogenesis is impossible. It is however in perfect agreement with all oscillation data. The prediction for mu -> e gamma is in general too large, unless the SUSY masses are in the range of several TeV. In this case tau -> e gamma and tau -> mu gamma are unobservable.Comment: 32 pages, 9 figures. Discussion on leptogenesis changed due to inclusion of flavor effects. To appear in PR
    corecore