305 research outputs found

    Status of Muon Collider Research and Development and Future Plans

    Get PDF
    The status of the research on muon colliders is discussed and plans are outlined for future theoretical and experimental studies. Besides continued work on the parameters of a 3-4 and 0.5 TeV center-of-mass (CoM) energy collider, many studies are now concentrating on a machine near 0.1 TeV (CoM) that could be a factory for the s-channel production of Higgs particles. We discuss the research on the various components in such muon colliders, starting from the proton accelerator needed to generate pions from a heavy-Z target and proceeding through the phase rotation and decay (πμνμ\pi \to \mu \nu_{\mu}) channel, muon cooling, acceleration, storage in a collider ring and the collider detector. We also present theoretical and experimental R & D plans for the next several years that should lead to a better understanding of the design and feasibility issues for all of the components. This report is an update of the progress on the R & D since the Feasibility Study of Muon Colliders presented at the Snowmass'96 Workshop [R. B. Palmer, A. Sessler and A. Tollestrup, Proceedings of the 1996 DPF/DPB Summer Study on High-Energy Physics (Stanford Linear Accelerator Center, Menlo Park, CA, 1997)].Comment: 95 pages, 75 figures. Submitted to Physical Review Special Topics, Accelerators and Beam

    Absolute mass lower limit for the lightest neutralino of the MSSM from e+ee^{+}e^{-} data at s\sqrt{s} up to 209 GeV

    Get PDF
    Charginos and neutralinos are searched for in the data collected by the ALEPH experiment at LEP for centre-of-mass energies up to 209 GeV. The negative result of these searches is combined with those from searches for sleptons and Higgs bosons to derive an absolute lower limit of 43.1 GeV/c(2) on the mass of the lightest supersymmetric particle (LSP), assumed to be the,lightest neutralino. This limit is obtained in the framework of the MSSM with R-parity conservation and with gaugino and sfermion mass unification at the GUT scale and assuming no mixing in the stau sector. The LSP limit degrades only slightly to 42.4 GeV/c(2) if stau mixing is considered. Within the more constrained framework of minimal supergravity, the limit is 50 GeV/c(2)

    Measurement of the W-pair cross section in e+ee^+ e^- collisions at 172 GeV

    Get PDF
    The e+e- --> W+W- cross section is measured in a data sample collected by ALEPH at a mean centre--of--mass energy of 172.09 GEV, corresponding to an integrated luminosity of 10.65 pb-1. Cross sections are given for the three topologies, fully leptonic, semi-leptonic and hadronic of a W-pair decay. Under the assumption that no other decay modes are present, the W-pair cross section is measured to be 11.7 +- 1.2 (stat.) +- 0.3 (syst.) pb. The existence of the triple gauge boson vertex of the Standard Model is clearly preferred by the data. The decay branching ratio of the W boson into hadrons is measured to be B(W --> hadrons) = 67.7 +- 3.1 (stat.) +- 0.7 (syst.)%, allowing a determination of the CKM matrix element |Vcs|= 0.98 +- 0.14 (stat.) +- 0.03 (syst.)

    Measurement of the tau lepton lifetime with the three-dimensional impact parameter method.

    No full text
    A new method is presented for the measurement of the mean τ\tau lepton lifetime using events in which τ\tau's are pair-produced and both τ\tau's decay to hadrons and ντ\nu_\tau. Based on the correlation between the two τ\tau's produced at a symmetric e+ee^+ e^- collider, the 3DIP method relies on the three-dimensional information from a double-sided vertex detector and on kinematic constraints for the precise measurement of the τ\tau decay angles. Using the data collected from 1992 to 1994 with the ALEPH detector at LEP, a τ\tau lifetime of 288.0±3.1±1.3288.0 \pm 3.1 \pm 1.3 \fs is obtained from the sample in which both τ\tau's decay to one charged track, and 292.8±5.6±3.0292.8 \pm 5.6 \pm 3.0 \fs from the sample in which one τ\tau decays to one prong and the other to three prongs. The results show small statistical correlations with those derived from other methods. When combined with the previously published ALEPH measurements, the resulting τ\tau lifetime is 291.2±2.0±1.2291.2 \pm 2.0 \pm 1.2 \fs

    Search for the bcb_c meson in hadronic Z decays

    Get PDF
    A search for the Bc meson decaying into the channels J/psi pi+ and J/psi l nu (l = e or mu) is performed in a sample of 3.9 million hadronic Z decays collected by the ALEPH detector. This search results in the observation of 0 and 2 candidates in each of these channels, respectively, while 0.44 and 0.81 background events are expected. The following 90\% confidence level upper limits are derived: Br(Z->Bc X)/Br(Z->q q )*Br(Bc->J/psi pi+) 3.6 10^-5 Br(Z->Bc X)/Br(Z->q q )*Br(Bc->J/psi l nu) 5.2 10^-5 An additional Bc->J/psi(e+e-) mu nu candidate with very low background probability, found in an independent analysis, is also described in detail

    Measurement of the tau lepton lifetime with the three-dimensional impact parameter method.

    Get PDF
    A new method is presented for the measurement of the mean τ\tau lepton lifetime using events in which τ\tau's are pair-produced and both τ\tau's decay to hadrons and ντ\nu_\tau. Based on the correlation between the two τ\tau's produced at a symmetric e+ee^+ e^- collider, the 3DIP method relies on the three-dimensional information from a double-sided vertex detector and on kinematic constraints for the precise measurement of the τ\tau decay angles. Using the data collected from 1992 to 1994 with the ALEPH detector at LEP, a τ\tau lifetime of 288.0±3.1±1.3288.0 \pm 3.1 \pm 1.3 \fs is obtained from the sample in which both τ\tau's decay to one charged track, and 292.8±5.6±3.0292.8 \pm 5.6 \pm 3.0 \fs from the sample in which one τ\tau decays to one prong and the other to three prongs. The results show small statistical correlations with those derived from other methods. When combined with the previously published ALEPH measurements, the resulting τ\tau lifetime is 291.2±2.0±1.2291.2 \pm 2.0 \pm 1.2 \fs

    Measurement of the tau lepton lifetime with the three-dimensional impact parameter method.

    No full text
    A new method is presented for the measurement of the mean τ\tau lepton lifetime using events in which τ\tau's are pair-produced and both τ\tau's decay to hadrons and ντ\nu_\tau. Based on the correlation between the two τ\tau's produced at a symmetric e+ee^+ e^- collider, the 3DIP method relies on the three-dimensional information from a double-sided vertex detector and on kinematic constraints for the precise measurement of the τ\tau decay angles. Using the data collected from 1992 to 1994 with the ALEPH detector at LEP, a τ\tau lifetime of 288.0±3.1±1.3288.0 \pm 3.1 \pm 1.3 \fs is obtained from the sample in which both τ\tau's decay to one charged track, and 292.8±5.6±3.0292.8 \pm 5.6 \pm 3.0 \fs from the sample in which one τ\tau decays to one prong and the other to three prongs. The results show small statistical correlations with those derived from other methods. When combined with the previously published ALEPH measurements, the resulting τ\tau lifetime is 291.2±2.0±1.2291.2 \pm 2.0 \pm 1.2 \fs

    Measurement of the tau lepton lifetime with the three-dimensional impact parameter method.

    Get PDF
    A new method is presented for the measurement of the mean τ\tau lepton lifetime using events in which τ\tau's are pair-produced and both τ\tau's decay to hadrons and ντ\nu_\tau. Based on the correlation between the two τ\tau's produced at a symmetric e+ee^+ e^- collider, the 3DIP method relies on the three-dimensional information from a double-sided vertex detector and on kinematic constraints for the precise measurement of the τ\tau decay angles. Using the data collected from 1992 to 1994 with the ALEPH detector at LEP, a τ\tau lifetime of 288.0±3.1±1.3288.0 \pm 3.1 \pm 1.3 \fs is obtained from the sample in which both τ\tau's decay to one charged track, and 292.8±5.6±3.0292.8 \pm 5.6 \pm 3.0 \fs from the sample in which one τ\tau decays to one prong and the other to three prongs. The results show small statistical correlations with those derived from other methods. When combined with the previously published ALEPH measurements, the resulting τ\tau lifetime is 291.2±2.0±1.2291.2 \pm 2.0 \pm 1.2 \fs

    Measurement of the W mass in e+ee^+ e^- collisions at 183 GeV

    No full text
    The mass of the W boson is obtained from reconstructed invariant mass distributions in W-pair events. The sample of W pairs is selected from 57 pb1^{-1} collected with the ALEPH detector in 1997 at a centre-of-mass energy of 183 GeV. The invariant mass distributions of reweighted Monte Carlo events are fitted separately to the experimental distributions in the qqbarqqbarqqbarqqbar and all l\nuqqbar channels to give the following W masses: mWhadronic=80.461±0.177(stat.)±0.045(syst.)±0.056(theory)GeV/c2m_{W}^{hadronic} = 80.461 \pm 0.177(stat.) \pm 0.045(syst.) \pm 0.056(theory) GeV/c^2, mWsemileptonic=80.326±0.184(stat.)±0.040(syst.)GeV/c2m_{W}^{semileptonic} = 80.326 \pm 0.184(stat.) \pm 0.040(syst.) GeV/c^2 where the theory error represents the possible effects of final state interactions. The combination of these two measurements, including the LEP energy calibration uncertainty, gives $m_{W} = 80.393 \pm 0.128(stat.)\pm 0.041(syst.) \pm 0.028(theory)\pm 0.021(LEP) GeV/c^2

    Measurement of the tau lepton lifetime with the three-dimensional impact parameter method.

    Get PDF
    A new method is presented for the measurement of the mean τ\tau lepton lifetime using events in which τ\tau's are pair-produced and both τ\tau's decay to hadrons and ντ\nu_\tau. Based on the correlation between the two τ\tau's produced at a symmetric e+ee^+ e^- collider, the 3DIP method relies on the three-dimensional information from a double-sided vertex detector and on kinematic constraints for the precise measurement of the τ\tau decay angles. Using the data collected from 1992 to 1994 with the ALEPH detector at LEP, a τ\tau lifetime of 288.0±3.1±1.3288.0 \pm 3.1 \pm 1.3 \fs is obtained from the sample in which both τ\tau's decay to one charged track, and 292.8±5.6±3.0292.8 \pm 5.6 \pm 3.0 \fs from the sample in which one τ\tau decays to one prong and the other to three prongs. The results show small statistical correlations with those derived from other methods. When combined with the previously published ALEPH measurements, the resulting τ\tau lifetime is 291.2±2.0±1.2291.2 \pm 2.0 \pm 1.2 \fs
    corecore