150 research outputs found

    Ultra-shallow-marine anoxia in an Early Triassic shallow-marine clastic ramp (Spitsbergen) and the suppression of benthic radiation

    Get PDF
    Lower Triassic marine strata in Spitsbergen accumulated on a mid-to-high latitude ramp in which high-energy foreshore and shoreface facies passed offshore into sheet sandstones of probable hyperpycnite origin. More distal facies include siltstones, shales and dolomitic limestones. Carbon isotope chemostratigraphy comparison allows improved age dating of the Boreal sections and shows a significant hiatus in the upper Spathian. Two major deepening events, in earliest Griesbachian and late Smithian time, are separated by shallowing-upwards trends that culminated in the Dienerian and Spathian substages. The redox record, revealed by changes in bioturbation, palaeoecology, pyrite framboid content and trace metal concentrations, shows anoxic phases alternating with intervals of better ventilation. Only Dienerian–early Smithian time witnessed persistent oxygenation that was sufficient to support a diverse benthic community. The most intensely anoxic, usually euxinic, conditions are best developed in offshore settings, but at times euxinia also developed in upper offshore settings where it is even recorded in hyperpycnite and storm-origin sandstone beds: an extraordinary facet of Spitsbergen's record. The euxinic phases do not track relative water depth changes. For example, the continuous shallowing upwards from the Griesbachian to lower Dienerian was witness to several euxinic phases separated by intervals of more oxic, bioturbated sediments. It is likely that the euxinia was controlled by climatic oscillations rather than intra-basinal factors. It remains to be seen if all the anoxic phases found in Spitsbergen are seen elsewhere, although the wide spread of anoxic facies in the Smithian/Spathian boundary interval is clearly a global event

    Huge quadratic magneto-optical Kerr effect and magnetization reversal in the Co2_2FeSi Heusler compound

    Full text link
    Co2_2FeSi(100) films with L21_1 structure deposited onto MgO(100) were studied exploiting both longitudinal (LMOKE) and quadratic (QMOKE) magneto-optical Kerr effect. The films exhibit a huge QMOKE signal with a maximum contribution of up to 30 mdeg, which is the largest QMOKE signal in reflection that has been measured thus far. This large value is a fingerprint of an exceptionally large spin-orbit coupling of second or higher order. The Co2_2FeSi(100) films exhibit a rather large coercivity of 350 and 70 Oe for film thicknesses of 22 and 98 nm, respectively. Despite the fact that the films are epitaxial, they do not provide an angular dependence of the anisotropy and the remanence in excess of 1% and 2%, respectively

    Magnetic anisotropies and magnetization reversal of the Co2_2Cr0.6_{0.6}Fe0.4_{0.4}Al Heusler compound

    Full text link
    Magnetic anisotropies and magnetization reversal properties of the epitaxial Heusler compound Co2_2Cr0.6_{0.6}Fe0.4_{0.4}Al (CCFA) deposited on Fe and Cr buffer layers are studied. Both samples exhibit a growth-induced fourfold anisotropy, and magnetization reversal occurs through the formation of stripy domains or 90 degree domains. During rotational magnetometric scans the sample deposited on Cr exhibits about 2 degree sharp peaks in the angular dependence of the coercive field, which are oriented along the hard axis directions. These peaks are a consequence of the specific domain structure appearing in this particular measurement geometry. A corresponding feature in the sample deposited on Fe is not observed.Comment: 11 pages, 7 figure

    Ion beam induced modification of exchange interaction and spin-orbit coupling in the Co2_2FeSi Heusler compound

    Full text link
    A Co2_2FeSi (CFS) film with L21_1 structure was irradiated with different fluences of 30 keV Ga+^+ ions. Structural modifications were subsequently studied using the longitudinal (LMOKE) and quadratic (QMOKE) magneto-optical Kerr effect. Both the coercivity and the LMOKE amplitude were found to show a similar behavior upon irradiation: they are nearly constant up to ion fluences of 6×1015\approx6\times10^{15} ion/cm2^2, while they decrease with further increasing fluences and finally vanish at a fluence of 9×1016\approx9\times10^{16} ion/cm2^2, when the sample becomes paramagnetic. However, contrary to this behavior, the QMOKE signal nearly vanishes even for the smallest applied fluence of 3×10143\times10^{14} ion/cm2^2. We attribute this reduction of the QMOKE signal to an irradiation-induced degeneration of second or higher order spin-orbit coupling, which already happens at small fluences of 30 keV Ga+^+ ions. On the other hand, the reduction of coercivity and LMOKE signal with high ion fluences is probably caused by a reduction of the exchange interaction within the film material

    An abrupt extinction in the Middle Permian (Capitanian) of the Boreal Realm (Spitsbergen) and its link to anoxia and acidification

    Get PDF
    The controversial Capitanian (Middle Permian, 262 Ma) extinction event is only known from equatorial latitudes, and consequently its global extent is poorly resolved. We demonstrate that there were two, severe extinctions amongst brachiopods in northern Boreal latitudes (Spitsbergen) in the Middle to Late Permian, separated by a recovery phase. New age dating of the Spitsbergen strata (belonging to the Kapp Starostin Formation), using strontium isotopes and d13C trends and comparison with better-dated sections in Greenland, suggests that the first crisis occurred in the Capitanian. This age assignment indicates that this Middle Permian extinction is manifested at higher latitudes. Redox proxies (pyrite framboids and trace metals) show that the Boreal crisis coincided with an intensification of oxygen depletion, implicating anoxia in the extinction scenario. The widespread and near-total loss of carbonates across the Boreal Realm also suggests a role for acidification in the crisis. The recovery interval saw the appearance of new brachiopod and bivalve taxa alongside survivors, and an increased mollusk dominance, resulting in an assemblage reminiscent of younger Mesozoic assemblages. The subsequent end-Permian mass extinction terminated this Late Permian radiation

    Progressive environmental deterioration in northwestern Pangea leading to the latest Permian extinction

    Get PDF
    Stratigraphic records from northwestern Pangea provide unique insight into global processes that occurred during the latest Permian extinction (LPE). We examined a detailed geochemical record of the Festningen section, Spitsbergen. A stepwise extinction is noted as: starting with (1) loss of carbonate shelly macrofauna, followed by (2) loss of siliceous sponges in conjunction with an abrupt change in ichnofabrics as well as dramatic change in the terrestrial environment, and (3) final loss of all trace fossils. We interpret loss of carbonate producers as related to shoaling of the lysocline in higher latitudes, in relationship to building atmospheric CO2. The loss of siliceous sponges is coincident with the global LPE event and is related to onset of high loading rates of toxic metals (Hg, As, Co) that we suggest are derived from Siberian Trap eruptions. The final extinction stage is coincident with redox-sen- sitive trace metal and other proxy data that suggest onset of anoxia after the other extinction events. These results show a remarkable record of progressive environmental deterioration in northwestern Pangea during the extinction crises
    corecore