434 research outputs found

    Tapered N-helical metamaterials with three-fold rotational symmetry as improved circular polarizers

    Get PDF
    Chiral helix-based metamaterials can potentially serve as compact and broadband circular polarizers. We have recently shown that the physics of structures composed of multiple intertwined helices, so called N-helices with N being an integer multiple of 4, is distinct from that of structures made of single circular helices (N = 1). In particular, undesired circular polarization conversion is strictly eliminated for N = 4 helices arranged on a square lattice. However, the fabrication of such structures for infrared/visible operation wavelengths still poses very significant challenges. Thus, we here revisit the possibility of reducing N from 4 to 3, which would ease micro-fabrication considerably. We show analytically that N = 3 helices arranged on a hexagonal lattice exhibit strictly vanishing circular polarization conversion. N = 3 is the smallest option as N = 2 obviously leads to linear birefringence. To additionally improve the circular-polarizer operation bandwidth and the extinction ratio while maintaining high transmission for the wanted polarization and zero conversion, we also investigate by numerical calculations N = 3 helices with tapered diameter along the helix axis. We find operation bandwidths as large as 2.4 octaves

    Advanced finite-element methods for design and analysis of nanooptical structures: Applications

    Full text link
    An overview on recent applications of the finite-element method Maxwell-solver JCMsuite to simulation tasks in nanooptics is given. Numerical achievements in the fields of optical metamaterials, plasmonics, photonic crystal fibers, light emitting devices, solar cells, optical lithography, optical metrology, integrated optics, and photonic crystals are summarized

    Quasi-normal modes of AdS black holes : A superpotential approach

    Get PDF
    A novel method, based on superpotentials is proposed for obtaining the quasi-normal modes of anti-de Sitter black holes. This is inspired by the case of the three-dimensional BTZ black hole, where the quasi-normal modes can be obtained exactly and are proportional to the surface gravity. Using this approach, the quasi-normal modes of the five dimensional Schwarzschild anti-deSitter black hole are computed numerically. The modes again seem to be proportional to the surface gravity for very small and very large black holes. They reflect the well-known instability of small black holes in anti-deSitter space.Comment: LaTeX, 17 pages, 5 eps figures, 1 eepic figure, minor typos correcte

    Cosmic String Network Evolution in arbitrary Friedmann-Lemaitre models

    Get PDF
    We use the velocity-dependent one-scale model by Martins & Shellard to investigate the evolution of a GUT long cosmic string network in arbitrary Friedmann-Lemaitre models. Four representative models are used to show that in general there is no scaling solution. The implications for structure formation are briefly discussed.Comment: 8 pages, 4 postscript figures included, submitted to Phys. Rev.

    A detailed study of quasinormal frequencies of the Kerr black hole

    Full text link
    We compute the quasinormal frequencies of the Kerr black hole using a continued fraction method. The continued fraction method first proposed by Leaver is still the only known method stable and accurate for the numerical determination of the Kerr quasinormal frequencies. We numerically obtain not only the slowly but also the rapidly damped quasinormal frequencies and analyze the peculiar behavior of these frequencies at the Kerr limit. We also calculate the algebraically special frequency first identified by Chandrasekhar and confirm that it coincide with the n=8n=8 quasinormal frequency only at the Schwarzschild limit.Comment: REVTEX, 15 pages, 7 eps figure

    Fate of the Universe, Age of the Universe, Dark Matter, and the Decaying Vacuum Energy

    Get PDF
    It is shown that in the cosmological models based on a vacuum energy decaying as a^{-2}, where a is the scale factor of the universe, the fate of the universe in regard to whether it will collapse in future or expand forever is determined not by the curvature constant k but by an effective curvature constant k_{eff}. It is argued that a closed universe with k=1 may expand forever, in other words simulate the expansion dynamics of a flat or an open universe because of the possibility that k_{eff}=0 or -1, respectively. Two such models, in one of which the vacuum does not interact with matter and in another of which it does, are studied. It is shown that the vacuum equation of state p_{vac}= -\rho_{vac} may be realized in a decaying vacuum cosmology provided the vacuum interacts wuth matter. The optical depths for gravitational lensing as a function of the matter density and other parameters in the models are calculated at a source redshift of 2. The age of the universe is discussed and shown to be compatible with the new Hipparcos lower limit of 11Gyr. The possibility that a time-varying vacuum energy may serve as dark matter is suggested.Comment: AAS LaTex, 29 pages, published in the Astrophysical Journal, 520, 45, 199

    Surveillance strategies for Classical Swine Fever in wild boar – a comprehensive evaluation study to ensure powerful surveillance

    Get PDF
    Surveillance of Classical Swine Fever (CSF) should not only focus on livestock, but must also include wild boar. To prevent disease transmission into commercial pig herds, it is therefore vital to have knowledge about the disease status in wild boar. In the present study, we performed a comprehensive evaluation of alternative surveillance strategies for Classical Swine Fever (CSF) in wild boar and compared them with the currently implemented conventional approach. The evaluation protocol was designed using the EVA tool, a decision support tool to help in the development of an economic and epidemiological evaluation protocol for surveillance. To evaluate the effectiveness of the surveillance strategies, we investigated their sensitivity and timeliness. Acceptability was analysed and finally, the cost-effectiveness of the surveillance strategies was determined. We developed 69 surveillance strategies for comparative evaluation between the existing approach and the novel proposed strategies. Sampling only within sub-adults resulted in a better acceptability and timeliness than the currently implemented strategy. Strategies that were completely based on passive surveillance performance did not achieve the desired detection probability of 95%. In conclusion, the results of the study suggest that risk-based approaches can be an option to design more effective CSF surveillance strategies in wild boar

    From supply chain learning to the learning supply chain : drivers, processes, complexity, trade-offs and challenges

    Get PDF
    Purpose: The view that supply chain learning (SCL) has become a fundamental capability that supply chains must employ to innovate and improve their financial, technological, operational, environmental and social performance is widely accepted. However, the SCL phenomenon is still understudied and not fully understood by scholars, decision-makers and government representatives. This article aims to make sense of the existing literature and to identify important research directions that require further attention. Design/methodology/approach: This article reviews the diversity of SCL in the literature, proposes a typology of such a phenomenon, provides an overview of key articles in the literature and identifies a series of recommendations for the future development of the field. Findings: This article combines two fundamental dimensions from the literature (i.e. SCL driver and SCL network) to produce a typology of four types of SCL: Captive, Consortium, Selective and Distributed. Practical implications: The typology proposed here offers an important framework for supply chain decision-makers to rely on when implementing SCL initiatives. The implications of each type of SCL offer a robust rationale for decision-makers to adopt the most appropriate type of SCL or combinations of SCL types, given each situation. In addition, the typology supports policy-makers in further understanding the SCL phenomenon and creating effective innovation, economic development and sustainability policies through supply chains. Originality/value: This article offers a novel typology that the authors hope will help scholars to advance the field of SCL in order to understand this important phenomenon. There is no good/bad/better/worse SCL type in the proposed typology, but the critical element for the success of SCL efforts is the level of fit between the type of SCL, the type of knowledge to be created and diffused, and the outcome supply chains aim to achieve with that learning effort. In addition, the authors coin the construct of “the learning supply chain”, which refers to a supply chain that learns constantly by employing all four types of SCL simultaneously
    • …
    corecore