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Abstract: Chiral helix-based metamaterials can potentially serve as
compact and broadband circular polarizers. We have recently shown that
the physics of structures composed of multiple intertwined helices, so
called N-helices with N being an integer multiple of 4, is distinct from
that of structures made of single circular helices (N = 1). In particular,
undesired circular polarization conversion is strictly eliminated for N = 4
helices arranged on a square lattice. However, the fabrication of such
structures for infrared/visible operation wavelengths still poses very
significant challenges. Thus, we here revisit the possibility of reducing N
from 4 to 3, which would ease micro-fabrication considerably. We show
analytically that N = 3 helices arranged on a hexagonal lattice exhibit
strictly vanishing circular polarization conversion. N = 3 is the smallest
option as N = 2 obviously leads to linear birefringence. To additionally
improve the circular-polarizer operation bandwidth and the extinction ratio
while maintaining high transmission for the wanted polarization and zero
conversion, we also investigate by numerical calculations N = 3 helices
with tapered diameter along the helix axis. We find operation bandwidths as
large as 2.4 octaves.
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1. Introduction

Chiral effects like optical activity or circular dichroism require both electric and magnetic-
dipole responses and are usually weak in natural substances. In contrast, in metamaterials,
they can be many orders of magnitude larger [1–8] and can also be tuned to desired operation
wavelengths. The status has been reviewed in [9]. In regard to concrete applications, gold-helix
metamaterials have been suggested as compact and broadband circular polarizers [2] in analogy
to linear wire-grid polarizers. Using a combination of direct laser writing and electroplating,
high-quality structures have been fabricated for mid-infrared frequencies [2]. Both, extinction
ratio and bandwidth have been further enhanced by tapering the helix radius along the helix
axis [5]. These asymmetric tapered helices show different circular polarization conversions
when changing the direction of propagation, making them either good circular polarizers or
analyzers, depending on their orientation.

However, circular polarization conversions are often unwanted. They result from the end of
the helix wire that, together with the helix axis, defines a direction in space that breaks the over-
all rotational symmetry. Linear birefringence is equivalent to circular polarization conversions.
By intertwining several helices in one unit cell, these conversions can be eliminated [10–12].
N = 2 helices (untapered and tapered [13]) exhibit even more obviously an unwanted linear
birefringence. N > 2 helix metamaterials show a completely different principle of operation
because the blocked circular polarization cannot simply be reflected as in the case of arrays of
single or double helices, but it must be absorbed. Absorption of the constituent metal of the he-
lix is therefore crucial [14]. To fully eliminate circular polarization conversions it is important
that N-fold rotational symmetry must be recovered not only by the structure, but also by the
lattice [14, 15].



Here, we extend our previous symmetry analysis from the case of N = 4,8,12, ... to the case
of N = 3,6,9, ... by arranging the N-helices onto a hexagonal lattice. We furthermore carry
out numerical calculations for N = 3 varying a crucial parameter, namely the helix radius, to
show that bandwidth and extinction ratio cannot be optimized simultaneously. We solve this
dilemma by introducing tapered N = 3 helices. By increasing the opening angle of the taper,
the bandwidth can be increased significantly while maintaining a high extinction ratio.

2. Symmetry and reciprocity

N-helices have been proposed several years ago [10–12], but certain constraints due to their
principle of operation have only been studied later for the case of N = 4,8,12, ... [14]. We
have shown that the four-fold rotational symmetry strictly eliminates off-diagonal elements
in the Jones transmission and reflection matrices in circular polarization basis, provided that
no diffracted orders other than the two 0-th orders occur. In contrast to single-helix arrays,
where the polarizer effect is achieved by reflecting the undesired circular polarization, N-helices
show strictly identical reflectance for both circular polarizations. This fact, together with the
conservation of energy implies strictly zero polarization effect in transmission, unless finite
losses are present (or a static magnetic field is added).
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Fig. 1. The unit cell of the proposed 3-helix structure on a hexagonal lattice is shown from
an oblique perspective (left). A part of the lattice is depicted on the right. The red lines
are guides to the eye highlighting three-fold rotational symmetry. The distance between
neighboring helices corresponds to the lattice constant a, for which we choose a = 1µm
throughout this article. For clarity, only a single axial pitch is depicted.

Here, we revisit the case N = 3,6,9, .... While related structures and their transmittance and
reflectance properties have already been studied in previous works, the underlying lattice has
always been a square array [11,12,16]. This lattice does not share a common rotational symme-
try with the N = 3 helices, hence the overall structure has only one-fold rotational symmetry.
Thus, circular polarization conversion may be reduced, but it is still allowed to be finite [17].

In what follows, for the sake of simplicity, we will only explicitly address the case of N = 3.
We do note, however, that all symmetry-based arguments also hold true for integer multiples of
3, namely N = 3,6,9, ....

To fully eliminate circular polarization conversion for N = 3, we propose hexagonal N-helix
arrays, therefore recovering three-fold rotational symmetry not only for the individual unit cell



but also for the array and therefore for the overall structure. Figure 1 shows the proposed unit
cell as well as part of the lattice. Following the lines of [14], we start from the invariance of the
Jones matrices for three-fold rotational symmetry under normal incidence. We assume that no
diffraction orders other than the transmitted and reflected zeroth orders occur. This assumption
is equivalent to stating that the lattice constant is smaller than the operating wavelength in air
or in the substrate (if the structures are supported by a substrate). Furthermore, we assume that
non-linear effects as well as static magnetic fields are absent. Under these conditions, the Jones
reflection matrix can be written as:

~Er = r̂lin ~Ei =

(
rxx rxy
ryx ryy

)
~Ei (1)

We now exploit three-fold rotational symmetry, which means that the matrix r̂lin must be
invariant under rotations of 120 degrees. Therefore, r̂lin has to commute with the 120-degree
rotation matrix M̂120:

r̂lin = M̂120 r̂lin M̂−1
120 (2)

In analogy to the case of N = 4, this also leads to rxx = ryy and ryx = −rxy [18]. We can
hence rewrite r̂lin:

r̂lin =

(
rxx rxy
−rxy rxx

)
(3)

The same reasoning holds true for the transmission matrix t̂lin. The basis can be changed from
linear to circular polarization basis by r̂circ = Ŝ r̂lin Ŝ−1 with the matrix Ŝ given by:

Ŝ =
1√
2

(
1 −i
1 i

)
(4)

In circular polarization we therefore get:

r̂circ =

(
rRCP LCP 0

0 rLCP RCP

)
=

(
rxx + irxy 0

0 rxx− irxy

)
(5)

and

t̂circ =

(
tLCP LCP 0

0 tRCP RCP

)
=

(
txx + i txy 0

0 txx− i txy

)
(6)

From here on, we could follow the same reasoning as in [14]. Instead, we follow an alter-
native approach that is based on a reciprocity argument. Let us first take any incoming Jones
vector~a which, together with the Jones matrix in forward direction M̂ yields an emerging Jones
vector M̂~a. In the reverse direction we take a different Jones vector~b, the Jones matrix in reverse
propagation direction M̂r and emerging Jones vector M̂r~b. The De Hoop reciprocity [19–21]
then states that

~b† M̂~a = (~a∗)† M̂r~b∗, (7)

which is satisfied provided that M̂r = M̂t, where M̂t denotes the transposed Jones matrix. In
the special case of reflection normal to a surface, trivially, the Jones matrices in forward and
reverse direction must be equal r̂lin = r̂ r

lin. We emphasize that r̂ r
lin does not refer to the Jones

reflection from the other side of the sample, but to the Jones reflection matrix if incident and
reflected field are interchanged. This leads to the general result

r̂lin = r̂ t
lin (8)



The linear polarization conversions in reflection, rxy and ryx, must therefore be strictly equal
for normal incidence: ryx = rxy.

If we now combine the restrictions for the Jones reflection matrix derived from three-fold
rotational symmetry with the constraints given by reciprocity, we find that ryx = rxy = 0 and
the Jones reflection matrix can be written as

r̂lin = r̂circ =

(
rxx 0
0 rxx

)
= rxx1 (9)

The Jones reflection matrix is proportional to the identity matrix 1. Thus, the Jones reflection
coefficient is the same for all polarizations. This holds true with and without losses. If, further-
more, losses are absent, conservation of energy dictates that not only the reflection coefficients
but also the transmission coefficients tRCP RCP and tLCP LCP are equal. Therefore, without loss-
es, any reciprocal structure posessing overall three-fold or four-fold rotational symmetry can
fundamentally not act as a circular polarizer. If a polarizing effect is desired, the difference
in transmittance must necessarily be achieved through absorption/losses (or, in principle, by
applying an additional static magnetic field).

3. Numerical calculations

The findings of the previous section have shown a fundamentally different behavior of N-helices
and single helices. While for single helices even without losses strong circular dichroism can be
achieved and the undesired circular polarization is simply reflected, losses are essential for N-
helices to absorb one circular polarization and transmit the other. Therefore, knowledge gained
from optimizing the geometrical parameters for arrays of single helices [22] cannot be direct-
ly applied to N-helices. Here, we carry out numerical calculations using the software package
JCMsuite, which is based on a frequency-domain finite-element method (FEM). Both, trans-
mittance and reflectance spectra of electromagnetic plane waves at normal incidence have been
calculated. However, as there is no difference in reflectance, only transmittance spectra are de-
picted. Furthermore, only the diagonal elements of the Jones matrices will be discussed because
the circular polarization conversions are strictly zero. We hence only plot TLCP = |tLCP LCP|2 and
TRCP = |tRCP RCP|2.
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Fig. 2. Transmittance spectra for both circular polarizations are shown for N = 4 helices in
a square array (black) and N = 3 helices in a hexagonal array (red) with otherwise iden-
tical geometrical parameters. Transmittance for incident right-handed circular polarization
(RCP) and left-handed circular polarization (LCP) are shown by solid and dashed curves,
respectively.

As a first benchmark test we have used the same geometrical parameters as before for the
case of N = 4 helices, namely lattice period a= 1µm, helix radius rH = 300nm, and wire diam-
eter d = 100nm [14]. Furthermore, the pitch of the helix H is chosen equal to the lateral lattice
constant a. The number of helix pitches is chosen to be six in what follows (with the notable
exception of Fig. 5). To obtain the optical properties of the gold helix we have used a free-
electron model with a plasma frequency of ωPL = 1.37× 1016 rad/s and a collision frequency
of ωcol = 1.2×1014 rad/s. Furthermore, we have included a glass substrate in our model with
a dielectric constant of εglass = 2.25. The lattice constant of a = 1µm together with refractive
index of the substrate leads to a maximum frequency fmax = 200THz, below which no diffrac-
tion orders other than the zeroth orders are present for light impinging along the helix axis. The
calculated transmittance spectra for both cases, N = 3 and N = 4, are depicted in Fig. 2.

Clearly, the behavior is very similar in both cases. In particular, the transmittances for left-
handed circularly polarized light (LCP) TLCP are almost equal for N = 3 and N = 4 helices.
Furthermore, the bandwidths show no significant difference. As expected, all transmittances
tend to roll off for higher frequencies, simply due to the generally increasing metal absorption.
All spectra exhibit fine oscillations. Intuitively, these oscillations are related to the effective
modes of the system resulting from the coupling of the pitches of one helix and/or the coupling
of different helices. The transmittance for right-handed circularly polarized light (RCP) TRCP is
higher for the case of N = 3 helices and only reaches values of 0.2 on average. This leads to a
significantly deteriorated extinction ratio. This decrease can simply be explained by the lower
effective volume filling fraction of gold as the unwanted polarization must be absorbed. This
raises the question whether it is possible to find a set of geometrical parameters yielding an
acceptable extinction ratio over an extended bandwidth.

One of the most crucial geometrical parameters influencing both bandwidth and extinction
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Fig. 3. The transmittance spectra for RCP and LCP are shown in (a) on the left- and right-
hand side, respectively, for different helix radii rH (color-coded). By fitting a box-function
values for the relative bandwidth and average values for TRCP and TLCP were derived and
plotted in (b).

ratio is the helix radius rH. To optimize the optical performance of our design, we have varied
the helix radius from rH = 100nm to rH = 400nm. The selected, calculated spectra depicted
in Fig. 3(a) show a clear trend. With increasing helix radius, the bandwidth increases signifi-
cantly. Simultaneously, TRCP is decreased. At first sight, this is a win-win situation. Unfortu-
nately, however, the transmittance TLCP is also decreased significantly. As can be seen from the
reflectance spectra (not depicted), this decrease is mainly due to an increase in absorption. Un-
fortunately, due to the complexity of the system, we cannot give a simple intuitive explanation
for this trend.

To deduce simple key figures to analyze these trends quantitatively, we have first normalized
TRCP to TLCP and have then fitted a box function to extract a value for the relative bandwidth.
This relative bandwidth and the two averaged transmittances TLCP and TRCP within the band give
a total of three key figures that are plotted in Fig. 3(b) for the different helix radii. The relative
bandwidth increases linearly with increasing helix radius rH, reaching unmatched values of
almost 3 octaves spanning across almost the entire mid-infrared range. The highest extinction



ratio, however, can be achieved for rH = 200nm with TLCP/TRCP > 3.5. For larger helix radii,
the extinction ratio decreases again to values around TLCP/TRCP ≈ 3. It is therefore not possible
to maximize both, bandwidth and extinction ratio simultaneously.

For arrays of single helices, tapering the helix radius along the helix has previously led
to a substantial improvement, both for the extinction ratio as well as for the bandwidth [5].
Therefore, we consider a tapered N = 3 helix structure, again arranged on a hexagonal array.
The unit cell is depicted in Fig. 4(a), again only for one axial pitch for clarity. Calculations
are carried out for 6 axial pitches as before. The helix radius is tapered linearly from a small
radius which is kept constant at rH = 100nm to a large radius r2. The orientation with respect
to the substrate is not changed and always chosen as depicted. In contrast to the case of tapered
single helices, for normal incidence the transmittance for a given circular polarization does
not depend on the propagation direction as circular polarization conversions are zero. Only the
diagonal elements of the Jones matrix are non-zero. Due to reciprocity, these have to be equal
in forward and backward direction [20].

The transmittance spectra for both circular polarizations are shown in Fig. 4(b) for three se-
lected taper ratios r2 /rH. The bandwidth increases considerably for large taper ratios, similarly
to the untapered helix case for an increasing helix radius. The overall transmittances for both
circular polarizations decrease again, but the decrease for TLCP is not as pronounced as before
for the case of untapered helices. This aspect leads to a higher extinction ratio.

For all calculations we have again extracted the values for relative bandwidth and averaged
transmittances within the respective band. As expected, increasing the taper ratio leads to an
approximately linear increase in relative bandwidth, reaching a maximum of about 2.4 octaves.
The calculated bandwidth at r2 = 400nm is only slightly smaller than for the untapered case
with rH = 400nm. This suggests that, for N-helices, the bandwidth is mainly determined by the
maximum radius of the tapered helix rather than by the tapering function.

The extinction ratio TLCP/TRCP, however, increases with increasing taper ratio and reaches
values of TLCP/TRCP ≈ 4 for a taper ratio of r2 /rH = 4. This trend is opposite to that observed
for untapered helices.
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Fig. 4. (a) The unit cell of the proposed tapered N = 3 helix structure in a hexagonal lattice
is shown from an oblique perspective (left). On the right-hand side the gold structure is de-
picted without the substrate from a side view to indicate r2 and rH. For illustration purposes
only one pitch is depicted. (b) The transmittance spectra for RCP and LCP are shown on the
left- and right-hand side, respectively, for selected maximum radii r2 and therefore differ-
ent taper ratios (color-coded). By fitting a box-function, values for the relative bandwidth
and average values for TRCP and TLCP are derived and plotted in (c).



We have furthermore carried out the same calculations as above for twelve pitches. Figure 5
shows the transmittance spectra for 6 and 12 pitches for a taper ratio of r2 /rH = 4. Even
though the taper angle is different, due to the different overall structure height, the change
in bandwidth is negligible, suggesting that the bandwidth is only governed by the maximum
radius. As expected, both transmittances TRCP and TLCP are decreased, but not by the same
factor. Thus, the extinction ratio is increased to about TLCP/TRCP ≈ 12.5.

For a pure bulk effect, one would expect that the transmittances for 12 pitches are simply the
squares of those for 6 pitches. To allow for this comparison, we have also included the square
of the transmittances for 6 pitches T 2

RCP and T 2
LCP, depicted in gray. The calculated spectra for

RCP for 12 pitches fit this expectation very well. For the case of LCP, the transmittance for 12
pitches is even higher than expected. This can probably be attributed to remaining boundary
effects as well as to the different taper angle.
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Fig. 5. The transmittance spectra for RCP and LCP are shown for 6 and 12 pitches in black
and red, respectively. The same geometrical parameters were used as before with a taper
ratio of r2 /rH = 4. The dashed, gray curves are a rough approximation for 12 pitches that
is obtained by squaring the transmittance spectra for 6 pitches.

4. Conclusions

In conclusion, we have demonstrated that N = 3 helices, if arranged in a hexagonal lattice,
show strictly zero circular polarization conversions. Furthermore, we have shown that, just as
in the case of N = 4 helices, losses are essential to obtain circular dichroism. To obtain these
results, we have used a different reasoning than previously for N = 4 helices, namely one based
on reciprocity. We emphasize again at this point, that our reasoning holds true not only for
N-helical structures, but for all reciprocal structures that carry an overall three- or four-fold
rotational symmetry when only zeroth diffraction orders are present.

Our numerical calculations show a slightly worse performance for N = 3 helices compared to
the case of N = 4, which we assign to the smaller gold volume filling fraction and thus smaller
effective absorption. By varying the helix radius, we have demonstrated that bandwidth and
extinction ratio cannot be optimized simultaneously for untapered N = 3 helices. Therefore,
we have suggested a novel design, namely tapered N = 3 helices on a hexagonal lattice. This



design shows both, improved extinction ratio and larger bandwidth with increasing taper ratio.
While the achievable values for the extinction ratio are still orders of magnitude worse than

what is feasible for linear wire-grid polarizers, the observed trend unequivocally shows that with
more complex designs polarization-conserving helical structures with strong circular dichroism
over an unmatched bandwidth come into reach.
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