151 research outputs found

    Susceptibility functions for slow relaxation processes in supercooled liquids and the search for universal relaxation patterns

    Full text link
    In order to describe the slow response of a glass former we discuss some distribution of correlation times, e.g., the generalized gamma distribution (GG) and an extension thereof (GGE), the latter allowing to reproduce a simple peak susceptibility such as of Cole-Davidson type as well as a susceptibility exhibiting an additional high frequency power law contribution (excess wing). Applying the GGE distribution to the dielectric spectra of glass formers exhibiting no beta-process peak (glycerol, propylene carbonate and picoline) we are able to reproduce the salient features of the slow response (1e-6 Hz - 1e9 Hz). A line shape analysis is carried out either in the time or frequency domain and in both cases an excess wing can be identified. The latter evolves in a universal way while cooling and shows up for correlation times tau_alpha > 1e-8 s. It appears that its first emergence marks the break down of the high temperature scenario of mode coupling theory. - In order to describe a glass former exhibiting a beta-process peak we have introduced a distribution function which is compatible with assuming a thermally activated process in contrast to some commonly used fit functions. Together with the GGE distribution this function allows in the frame of the Williams-Watts approach to completely interpolate the spectra, e.g. of fluoro aniline (1e-6 Hz - 1e9 Hz). The parameters obtained indicate an emergence of both the excess wing and the beta-process again at tau_alpha > 1e-8s.Comment: 22 pages, 12 figure

    The Influence of Molecular Architecture on the Dynamics of H-Bonded Supramolecular Structures in Phenyl-Propanols

    Full text link
    The relaxation behaviour of monohydroxy alcohols (monoalcohols) in broadband dielectric spectroscopy (BDS) is usually dominated by the Debye process. This process is regarded as a signature of the dynamics of transient supramolecular structures formed by H-bonding. In phenyl propanols the steric hindrance of the phenyl ring is assumed to influence chain formation and thereby to decrease or even suppress the intensity of the Debye process. In the present paper we study this effect in a systematic series of structural isomers of phenyl-1-propanol in comparison with 1-propanol. It turns out that by combining BDS, Photon Correlation Spectroscopy (PCS) and calorimetry the dynamics of supramolecular structures can be uncovered. While light scattering spectra show the same spectral shape of the main relaxation for all investigated monoalcohols, the dielectric spectra differ in the Debye contribution. Thus it becomes possible for the first time to unambiguously disentangle both relaxation modes in the dielectric spectra. It turns out that the Debye relaxation gets weaker the closer the position of phenyl ring is to the hydroxy group, in accordance with the analysis of the Kirkwood-Fr\"ohlich correlation factor. Even in 1-phenyl-1-propanol, which has the phenyl group attached at the closest position to the hydroxy group, we can separate a Debye-contribution in the dielectric spectrum. From this we conclude that hydrogen bonds are not generally suppressed by the increased steric hindrance of the phenyl ring, but rather an equilibrium of ring and chain-like structures is shifted towards ring-like shapes on shifting the phenyl ring closer to the hydroxy group. Moreover, the shape of the alpha-relaxation as monitored by PCS and BDS remains unaffected by the degree of hydrogen bonding and is the same among the investigated alcohols.Comment: 9 pages, 7 figure

    On the Nature of the Debye-Process in Monohydroxy Alcohols: 5-Methyl-2-Hexanol Investigated by Depolarized Light Scattering and Dielectric Spectroscopy

    Full text link
    The slow Debye-like relaxation in the dielectric spectra of monohydroxy alcohols is a matter of long standing debate. In the present work, we probe reorientational dynamics of 5-methyl-2-hexanol with dielectric spectroscopy and depolarized light scattering (DDLS) in the supercooled regime. While in a previous study of a primary alcohol no indication of the Debye peak in the DDLS spectra was found, we now for the first time report clear evidence of a Debye contribution in a monoalcohol in DDLS. A quantitative comparison between the dielectric and DDLS manifestation of the Debye peak reveals that while the dielectric Debye process represents fluctuations in the end-to-end vector dipole moment of the transient chains, its occurrence in DDLS shows a more local signature and is related to residual correlations which occur due to a slight anisotropy of the Ī±\alpha-relaxation caused by the chain formation.Comment: 5 pages, 5 figures; accepted in Phys. Rev. Let

    Dipole-dipole correlations and the Debye process in the dielectric response of non-associating glass forming liquids

    Full text link
    The non-exponential shape of the Ī±\alpha-process observed in supercooled liquids is considered as one of the hallmarks of glassy dynamics and has thus been under study for decades, but is still poorly understood. For a polar van der Waals liquid, we show here - in line with a recent theory - that dipole-dipole correlations give rise to an additional process in the dielectric spectrum slightly slower than the Ī±\alpha-relaxation, which renders the resulting combined peak narrower than observed by other experimental techniques. This is reminiscent of the Debye process found in monohydroxy alcohols. The additional peak can be suppressed by weakening the dipole-dipole interaction via dilution with a nonpolar solvent

    Glassy dynamics in polyalcohols:intermolecular simplicity vs. intramolecular complexity

    Get PDF
    Using depolarized light scattering, we have recently shown that structural relaxation in a broad range of supercooled liquids follows, to good approximation, a generic line shape with high-frequency power law . We now continue this study by investigating a systematic series of polyalcohols (PAs), frequently used as model-systems in glass-science, , because the width of their respective dielectric loss spectra varies strongly along the series. Our results reveal that the microscopic origin of the observed relaxation behavior varies significantly between different PAs: while short-chained PAs like glycerol rotate as more or less rigid entities and their light scattering spectra follow the generic shape, long-chained PAs like sorbitol display pronounced intramolecular dynamic contributions on the time scale of structural relaxation, leading to systematic deviations from the generic shape. Based on these findings we discuss an important limitation for observing the generic shape in a supercooled liquid: the dynamics that is probed needs to reflect the intermolecular dynamic heterogeneity, and must not be superimposed by effects of intramolecular dynamic heterogeneity

    Local dielectric response in 1-propanol: Ī±\alpha-relaxation versus relaxation of mesoscale structures

    Full text link
    The dielectric Debye relaxation in monohydroxy alcohols has been subject of long-standing scientific interest and is presently believed to arise from the relaxation of transiently H-bonded supramolecular structures. Therefore, its manifestation might be expected to differ from a local dielectric probe as compared to the standard macroscopic dielectric experiment. In this work we present such local dielectric measurements obtained by triplet state solvation dynamics (TSD) and compare the results with macroscopic dielectric and light scattering data. In particular, with data from an improved TSD setup, a detailed quantitative comparison reveals that the Debye process does not significantly contribute to the local Stokes shift response function, while Ī±\alpha- and Ī²\beta-relaxations are clearly resolved. Furthermore, this comparison reveals that the structural relaxation has almost identical time constants and shape parameters in all three measurement techniques. Altogether our findings support the notion that the transiently bound chain structures lead to a strong cross-correlation contribution in macroscopic dielectric experiments, to which both light scattering and TSD are insensitive, the latter due to its local character and the former due to the molecular optical anisotropy being largely independent of the OH bonded suprastructures.Comment: 8 pages, 9 figure

    Revealing complex relaxation behavior of monohydroxy alcohols in a series of octanol isomers

    Get PDF
    We investigate the reorientation dynamics of four octanol isomers with very different characteristics regarding the formation of hydrogen-bonded structures by means of photon-correlation spectroscopy (PCS) and broadband dielectric spectroscopy. PCS is largely insensitive to orientational cross-correlations and straightforwardly probes the Ī±-process dynamics, thus allowing us to disentangle the complex dielectric relaxation spectra. The analysis reveals an additional dielectric relaxation contribution on time scales between the structural Ī±-process and the Debye process. In line with nuclear magnetic resonance results from the literature and recent findings from rheology experiments, we attribute this intermediate contribution to the dielectric signature of the Oā€“H bond reorientation. Due to being incorporated into hydrogen-bonded suprastructures, the Oā€“H bond dynamically decouples from the rest of the molecule. The relative relaxation strength of the resulting intermediate contribution depends on the respective position of the hydroxy group within the molecule and seems to vanish at sufficiently high temperatures, i.e., exactly when the overall tendency to form hydrogen bonded structures decreases. Furthermore, the fact that different octanol isomers share the same dipole density allows us to perform an in-depth analysis of how dipolar cross-correlations appear in dielectric loss spectra. We find that dipolar cross-correlations are not solely manifested by the presence of the slow Debye process but also scale the relaxation strength of the self-correlation contribution depending on the Kirkwood factor

    Temperature dependence of the static permittivity andintegral formula for the Kirkwood correlation factor ofsimple polar fluids

    Full text link
    An exact integral formula for the Kirkwood correlation factor of isotropic polar fluids gKg_K is derived from the equilibrium averaged rotational Dean equation, which as compared to previous approaches easily lends itself to further approximations. The static linear permittivity of polar fluids Ļµ\epsilon is calculated as a function of temperature, density and molecular dipole moment in vacuo for arbitrary pair interaction potentials. Then, using the Kirkwood superposition approximation for the three-body orientational distribution function, we suggest a simple way to construct model potentials of mean torques considering permanent and induced dipole moments. We successfully compare the theory with the experimental temperature dependence of the static linear permittivity of various polar fluids such as a series of linear monohydroxy alcohols, water, tributyl phosphate, acetonitrile, acetone, nitrobenzene and dimethyl sulfoxide, by fitting only one single parameter, which describes the induction to dipole-dipole energy strength ratio. We demonstrate that comparing the value of gKg_K with unity in order to deduce the alignment state of permanent dipole pairs, as is currently done is in many situations, is a misleading oversimplification, while the correct alignment state is revealed when considering the proper interaction potential. Moreover we show, that picturing H-bonding polar fluids as polar molecules with permanent and induced dipole moments without invoking any specific H-bonding mechanism is in many cases sufficient to explain experimental data of the static dielectric constant. In this light, the failure of the theory to describe the experimental temperature dependence of the static dielectric constant of glycerol, a non-rigid polyalcohol, is not due to the lack of specific H-bonding mechanisms, but rather to an oversimplified model potential for that particular molecule

    Universal Structural Relaxation in Supercooled Liquids

    Full text link
    One of the hallmarks of molecular dynamics in deeply supercooled liquids is the non-exponential character of the relaxation functions. It has been a long standing issue if 'universal' features govern the lineshape of glassy dynamics independent of any particular molecular structure or interaction. In the paper, we elucidate this matter by giving a comprehensive comparison of the spectral shape of depolarized light scattering and dielectric data of deeply supercooled liquids. The light scattering spectra of very different systems, e.g. hydrogen bonding and van der Waals liquids but also ionic systems, almost perfectly superimpose and show a generic lineshape of the structural relaxation, approximately following a high frequency power law Ļ‰āˆ’1/2\omega^{-1/2} . However, the dielectric loss peak shows a more individual shape. In systems with low dipole moment generic behavior is also observed in the dielectric spectra, while in strongly dipolar liquids additional crosscorrelation contributions mask the generic structural relaxation
    • ā€¦
    corecore