4,141 research outputs found

    Community development in rural communities

    Get PDF
    This report examines provides an overview of the economic conditions in northern New Hampshire, in 1987. (Library-derived description)Bloch, J. (1984). Community development in rural communities. Retrieved from http://academicarchive.snhu.eduMaster of Science (M.S.)School of Community Economic Developmen

    Alternative glues for the production of ATLAS silicon strip modules for the Phase-II upgrade of the ATLAS Inner Detector

    Get PDF
    The Phase-II upgrade of the ATLAS detector for the High Luminosity Large Hadron Collider (HL-LHC) includes the replacement of the current Inner Detector with an all-silicon tracker consisting of pixel and strip detectors. The current Phase-II detector layout requires the construction of 20,000 strip detector modules consisting of sensor, circuit boards and readout chips, which are connected mechanically using adhesives. The adhesive between readout chips and circuit board is a silver epoxy glue as was used in the current ATLAS SemiConductor Tracker (SCT). This glue has several disadvantages, which motivated the search for an alternative. This paper presents a study concerning the use of six ultra-violet (UV) cure glues and a glue pad for use in the assembly of silicon strip detector modules for the ATLAS upgrade. Trials were carried out to determine the ease of use, the thermal conduction and shear strength, thermal cycling, radiation hardness, corrosion resistance and shear strength tests. These investigations led to the exclusion of three UV cure glues as well as the glue pad. Three UV cure glues were found to be possible better alternatives. Results from electrical tests of first prototype modules constructed using these glues are presented.Comment: 23 pages, to be published in Journal of Instrumentatio

    Comparative study of sequence-dependent hybridization kinetics in solution and on microspheres

    Get PDF
    Hybridization kinetics of DNA sequences with known secondary structures and random sequences designed with similar melting temperatures were studied in solution and when one strand was bound to 5 μm silica microspheres. The rates of hybridization followed second-order kinetics and were measured spectrophotometrically in solution and fluorometrically in the solid phase. In solution, the rate constants for the model sequences varied by almost two orders of magnitude, with a decrease in the rate constant with increasing amounts of secondary structure in the target sequence. The random sequences also showed over an order of magnitude difference in the rate constant. In contrast, the hybridization experiments in the solid phase with the same model sequences showed almost no change in the rate constant. Solid phase rate constants were approximately three orders of magnitude lower compared with the solution phase constants for sequences with little or no single-stranded structure. Sequences with a known secondary structure yielded solution phase rate constants as low as 3 × 10(3) M(−1) s(−1) with solid phase rate constants for the same sequences measured at 2.5 × 10(2) M(−1) s(−1). The results from these experiments indicate that (i) solid phase hybridization occurs three orders of magnitude slower than solution phase, (ii) trends observed in structure-dependent kinetics of solution phase hybridization may not be applicable to solid phase hybridization and (iii) model probes with known secondary structure decrease reaction rates; however, even random sequences with no known internal single-stranded structure can yield a broad range of reaction rates

    Dispersive Elastodynamics of 1D Banded Materials and Structures: Design

    Full text link
    Within periodic materials and structures, wave scattering and dispersion occur across constituent material interfaces leading to a banded frequency response. In an earlier paper, the elastodynamics of one-dimensional periodic materials and finite structures comprising these materials were examined with an emphasis on their frequency-dependent characteristics. In this work, a novel design paradigm is presented whereby periodic unit cells are designed for desired frequency band properties, and with appropriate scaling, these cells are used as building blocks for forming fully periodic or partially periodic structures with related dynamical characteristics. Through this multiscale dispersive design methodology, which is hierarchical and integrated, structures can be devised for effective vibration or shock isolation without needing to employ dissipative damping mechanisms. The speed of energy propagation in a designed structure can also be dictated through synthesis of the unit cells. Case studies are presented to demonstrate the effectiveness of the methodology for several applications. Results are given from sensitivity analyses that indicate a high level of robustness to geometric variation.Comment: 33 text pages, 27 figure

    Vlasov moments, integrable systems and singular solutions

    Full text link
    The Vlasov equation for the collisionless evolution of the single-particle probability distribution function (PDF) is a well-known Lie-Poisson Hamiltonian system. Remarkably, the operation of taking the moments of the Vlasov PDF preserves the Lie-Poisson structure. The individual particle motions correspond to singular solutions of the Vlasov equation. The paper focuses on singular solutions of the problem of geodesic motion of the Vlasov moments. These singular solutions recover geodesic motion of the individual particles.Comment: 16 pages, no figures. Submitted to Phys. Lett.

    Prompt Optical Observations of Gamma-ray Bursts

    Get PDF
    The Robotic Optical Transient Search Experiment (ROTSE) seeks to measure simultaneous and early afterglow optical emission from gamma-ray bursts (GRBs). A search for optical counterparts to six GRBs with localization errors of 1 square degree or better produced no detections. The earliest limiting sensitivity is m(ROTSE) > 13.1 at 10.85 seconds (5 second exposure) after the gamma-ray rise, and the best limit is m(ROTSE) > 16.0 at 62 minutes (897 second exposure). These are the most stringent limits obtained for GRB optical counterpart brightness in the first hour after the burst. Consideration of the gamma-ray fluence and peak flux for these bursts and for GRB990123 indicates that there is not a strong positive correlation between optical flux and gamma-ray emission.Comment: 4 pages, 3 figures, submitted to ApJ Letter

    The smooth Whitehead spectrum of a point at odd regular primes

    Get PDF
    Let p be an odd regular prime, and assume that the Lichtenbaum-Quillen conjecture holds for K(Z[1/p]) at p. Then the p-primary homotopy type of the smooth Whitehead spectrum Wh(*) is described. A suspended copy of the cokernel-of-J spectrum splits off, and the torsion homotopy of the remainder equals the torsion homotopy of the fiber of the restricted S^1-transfer map t: SigmaCP^infty--> S. The homotopy groups of Wh(*) are determined in a range of degrees, and the cohomology of Wh(*) is expressed as an A-module in all degrees, up to an extension. These results have geometric topological interpretations, in terms of spaces of concordances or diffeomorphisms of highly connected, high dimensional compact smooth manifolds.Comment: Published by Geometry and Topology at http://www.maths.warwick.ac.uk/gt/GTVol7/paper4.abs.htm
    • …
    corecore