1,726 research outputs found
Infrared-Finite Amplitudes for Massless Gauge Theories
We present a method to construct infrared-finite amplitudes for gauge
theories with massless fermions. Rather than computing -matrix elements
between usual states of the Fock space we construct order-by-order in
perturbation theory dressed states that incorporate all long-range
interactions. The -matrix elements between these states are shown to be free
from soft and collinear singularities. As an explicit example we consider the
process jets at next-to-leading order in the strong coupling. We
verify by explicit calculation that the amplitudes are infrared finite and
recover the well-known result for the total cross section hadrons.Comment: 46 page
Total energies from variational functionals of the Green function and the renormalized four-point vertex
We derive variational expressions for the grand potential or action in terms
of the many-body Green function which describes the propagation of
particles and the renormalized four-point vertex which describes the
scattering of two particles in many-body systems. The main ingredient of the
variational functionals is a term we denote as the -functional which plays
a role analogously to the usual -functional studied by Baym (G.Baym,
Phys.Rev. 127, 1391 (1962)) in connection with the conservation laws in
many-body systems. We show that any -derivable theory is also
-derivable and therefore respects the conservation laws. We further set
up a computational scheme to obtain accurate total energies from our
variational functionals without having to solve computationally expensive sets
of self-consistent equations. The input of the functional is an approximate
Green function and an approximate four-point vertex
obtained at a relatively low computational cost. The
variational property of the functional guarantees that the error in the total
energy is only of second order in deviations of the input Green function and
vertex from the self-consistent ones that make the functional stationary. The
functionals that we will consider for practical applications correspond to
infinite order summations of ladder and exchange diagrams and are therefore
particularly suited for applications to highly correlated systems. Their
practical evaluation is discussed in detail.Comment: 21 pages, 10 figures. Physical Review B (accepted
Uncomfortable yet Fun Messaging with Chachachat
In order to improve user experience and to foster novel ideas, some voices in the HCI community have argued to break fundamental design rules, an approach well known in the art community. In this paper, we use this radical approach to design a playful mobile chat app called Chachachat, which allows users to send colorful 3-phrase messages from a limited set of phrases taken from dating websites and encourages intimate messaging with strangers with no possibility of meeting offline. We also present a case study of the usage of Chachachat in the wild over a period of six months and discuss ethical issues
Overnight Immune Regulation and Subjective Measures of Sleep: A Three Night Observational Study in Adolescent Track and Field Athletes
To ensure health maintenance of young athletes, immunological stress due to physical exercise has to be balanced for performance development and health maintenance. Sleep is an important influencing factor for immune regulation because of its regenerating effect. In an attempt to assess overnight immune regulation, this observational study aimed to examine associations between changes in capillary immunological blood markers and measures of sleep in adolescent athletes. Over a period of three nights, 12 male ( n = 6) and female ( n = 6) adolescent track and field athletes aged 16.4 ± 1.1 years were monitored for their sleep behavior (e.g., sleep duration, sleep depth) and immune regulation by using subjective (e.g., sleep) and objective (capillary blood markers) measurement tools. Over the 4 day (three nights), athletes followed their daily routines (school, homework, free time activities, and training). Training was performed for different disciplines (sprint, hurdles, and long-jump) following their daily training routines. Training included dynamic core stability training, coordination training, speed training, resistance training, and endurance training. Capillary blood samples were taken 30–45 min after the last training session (10:00–12:00 a.m. or 5:00–6:00 p.m.) and every morning between 7:00 and 10:00 a.m. Changes in capillary blood markers from post-training to the next morning and morning-to-morning fluctuations in capillary blood markers were analyzed over a three-night period using a generalized estimating equations (GEE) statistical approach. Associations of overnight changes with measures of sleep were analyzed using GEE. We found significant decreases in white blood cell count (WBC), granulocytes (GRAN), granulocytes% (GRAN%), monocytes (MID), and granulocyte-lymphocyte-ratio. In contrast, lymphocytes% (LYM%) increased significantly and systemic inflammation index showed no difference from post-training to the next morning. Furthermore, there was a significant decrease in WBC and GRAN between morning 1 and morning 3. At morning 4, values returned to baseline (morning 1), irrespective if athletes performed a training session or rested on day 3. Furthermore, sleep duration was significantly and negatively associated with changes in WBC (β z = −0.491) and lymphocytes (β z = −0.451). Our results indicate that overnight sleep duration is an important parameter of immunological overnight regulation for adolescent athletes
Quantum dynamics of a mobile spin impurity
One of the elementary processes in quantum magnetism is the propagation of spin excitations. Here we study the quantum dynamics of a deterministically created spin-impurity atom, as it propagates in a one-dimensional lattice system. We probe the spatial probability distribution of the impurity at different times using single-site-resolved imaging of bosonic atoms in an optical lattice. In the Mott-insulating regime, the quantum-coherent propagation of a magnetic excitation in the Heisenberg model can be observed using a post-selection technique. Extending the study to the superfluid regime of the bath, we quantitatively determine how the bath affects the motion of the impurity, showing evidence of polaronic behaviour. The experimental data agree with theoretical predictions, allowing us to determine the effect of temperature on the impurity motion. Our results provide a new approach to studying quantum magnetism, mobile impurities in quantum fluids and polarons in lattice systems
Self-decorating cells via surface-initiated enzymatic controlled radical polymerization
Through the innovative use of surface-displayed horseradish peroxidase, this work explores the enzymatic catalysis of both bioRAFT polymerization and bioATRP to prompt polymer synthesis on the surface of Saccharomyces cerevisiae cells, with bioATRP outperforming bioRAFT polymerization. The resulting surface modification of living yeast cells with synthetic polymers allows for a significant change in yeast phenotype, including growth profile, aggregation characteristics, and conjugation of non-native enzymes to the clickable polymers on the cell surface, opening new avenues in bioorthogonal cell-surface engineering
Recommended from our members
Consensus Statement on the Pathology of IgG4-Related Disease
IgG4-related disease is a newly recognized fibro-inflammatory condition characterized by several features: a tendency to form tumefactive lesions in multiple sites; a characteristic histopathological appearance; and—often but not always—elevated serum IgG4 concentrations. An international symposium on IgG4-related disease was held in Boston, MA, on 4–7 October 2011. The organizing committee comprising 35 IgG4-related disease experts from Japan, Korea, Hong Kong, the United Kingdom, Germany, Italy, Holland, Canada, and the United States, including the clinicians, pathologists, radiologists, and basic scientists. This group represents broad subspecialty expertise in pathology, rheumatology, gastroenterology, allergy, immunology, nephrology, pulmonary medicine, oncology, ophthalmology, and surgery. The histopathology of IgG4-related disease was a specific focus of the international symposium. The primary purpose of this statement is to provide practicing pathologists with a set of guidelines for the diagnosis of IgG4-related disease. The diagnosis of IgG4-related disease rests on the combined presence of the characteristic histopathological appearance and increased numbers of IgG4+ plasma cells. The critical histopathological features are a dense lymphoplasmacytic infiltrate, a storiform pattern of fibrosis, and obliterative phlebitis. We propose a terminology scheme for the diagnosis of IgG4-related disease that is based primarily on the morphological appearance on biopsy. Tissue IgG4 counts and IgG4:IgG ratios are secondary in importance. The guidelines proposed in this statement do not supplant careful clinicopathological correlation and sound clinical judgment. As the spectrum of this disease continues to expand, we advocate the use of strict criteria for accepting newly proposed entities or sites as components of the IgG4-related disease spectrum
ImageCLEF 2022: Multimedia Retrieval in Medical, Nature, Fusion, and Internet Applications
ImageCLEF is part of the Conference and Labs of the Evaluation Forum (CLEF) since 2003. CLEF 2022 will take place in Bologna, Italy. ImageCLEF is an ongoing evaluation initiative which promotes the evaluation of technologies for annotation, indexing, and retrieval of visual data with the aim of providing information access to large collections of images in various usage scenarios and domains. In its 20th edition, ImageCLEF will have four main tasks: (i) a Medical task addressing concept annotation, caption prediction, and tuberculosis detection; (ii) a Coral task addressing the annotation and localisation of substrates in coral reef images; (iii) an Aware task addressing the prediction of real-life consequences of online photo sharing; and (iv) a new Fusion task addressing late fusion techniques based on the expertise of the pool of classifiers. In 2021, over 100 research groups registered at ImageCLEF with 42 groups submitting more than 250 runs. These numbers show that, despite the COVID-19 pandemic, there is strong interest in the evaluation campaign
Long-term effects of evolocumab in participants with HIV and dyslipidemia: results from the open-label extension period
Objectives: People with HIV (PWH) are at an increased risk of atherosclerotic cardiovascular disease. Suboptimal responses to statin therapy in PWH may result from antiretroviral therapies (ARTs). This open-label extension study aimed to evaluate the long-term safety and efficacy of evolocumab up to 52\u200aweeks in PWH. Design: This final analysis of a multinational, placebo-controlled, double-blind, randomized phase 3 trial evaluated the effect of monthly subcutaneous evolocumab 420\u200amg on low-density lipoprotein cholesterol (LDL-C) during the open-label period (OLP) following 24\u200aweeks of double-blind period in PWH with hypercholesterolemia/mixed dyslipidemia. All participants enrolled had elevated LDL-C or nonhigh-density lipoprotein cholesterol (non-HDL-C) and were on stable maximally tolerated statin and stable ART. Methods: Efficacy was assessed by percentage change from baseline in LDL-C, triglycerides, and atherogenic lipoproteins. Treatment-emergent adverse events (TEAEs) were examined. Results: Of the 467 participants randomized in the double-blind period, 451 (96.6%) received at least one dose of evolocumab during the OLP (mean age of 56.4\u200ayears, 82.5% male, mean duration with HIV of 17.4\u200ayears). By the end of the 52-week OLP, the overall mean (SD) percentage change in LDL-C from baseline was -57.8% (22.8%). Evolocumab also reduced triglycerides, atherogenic lipid parameters (non-HDL-C, apolipoprotein B, total cholesterol, very-low-density lipoprotein cholesterol, and lipoprotein[a]), and increased HDL-C. TEAEs were similar between placebo and evolocumab during the OLP. Conclusion: Long-term administration of evolocumab lowered LDL-C and non-HDL-C, allowing more PWH to achieve recommended lipid goals with no serious adverse events. Trail registration: NCT02833844. Video abstract: http://links.lww.com/QAD/C441
Quantum dynamics of a single, mobile spin impurity
Quantum magnetism describes the properties of many materials such as transition metal oxides and cuprate superconductors. One of its elementary processes is the propagation of spin excitations. Here we study the quantum dynamics of a deterministically created spin-impurity atom, as it propagates in a one-dimensional lattice system. We probe the full spatial probability distribution of the impurity at different times using single-site-resolved imaging of bosonic atoms in an optical lattice. In the Mott-insulating regime, a post-selection of the data allows to reduce the effect of temperature, giving access to a space- and time-resolved measurement of the quantum-coherent propagation of a magnetic excitation in the Heisenberg model. Extending the study to the bath's superfluid regime, we determine quantitatively how the bath strongly affects the motion of the impurity. The experimental data shows a remarkable agreement with theoretical predictions allowing us to determine the effect of temperature on the coherence and velocity of impurity motion. Our results pave the way for a new approach to study quantum magnetism, mobile impurities in quantum fluids, and polarons in lattice systems
- …