221 research outputs found

    The Flagellar Arginine Kinase in Trypanosoma brucei Is Important for Infection in Tsetse Flies

    Get PDF
    African trypanosomes are flagellated parasites that cause sleeping sickness. Parasites are transmitted from one mammalian host to another by the bite of a tsetse fly. Trypanosoma brucei possesses three different genes for arginine kinase (AK) including one (AK3) that encodes a protein localised to the flagellum. AK3 is characterised by the presence of a unique amino-terminal insertion that specifies flagellar targeting. We show here a phylogenetic analysis revealing that flagellar AK arose in two independent duplication events in T. brucei and T. congolense, the two species of African trypanosomes that infect the tsetse midgut. In T. brucei, AK3 is detected in all stages of parasite development in the fly (in the midgut and in the salivary glands) as well as in bloodstream cells, but with predominance at insect stages. Genetic knockout leads to a slight reduction in motility and impairs parasite infectivity towards tsetse flies in single and competition experiments, both phenotypes being reverted upon expression of an epitope-tagged version of AK3. We speculate that this flagellar arginine kinase is important for T. brucei infection of tsetse, especially in the context of mixed infections and that its flagellar targeting relies on a system equivalent to that discovered for calflagins, a family of trypanosome flagellum calcium binding proteins

    Merozoite release from Plasmodium falciparum-infected erythrocytes involves the transfer of DiIC16 from infected cell membrane to Maurer’s clefts

    Get PDF
    Merozoite release from infected erythrocytes is a complex process, which is still not fully understood. Such process was characterised at ultra-structural level in this work by labelling erythrocyte membrane with a fluorescent lipid probe and subsequent photo-conversion into an electron-dense precipitate. A lipophilic DiIC16 probe was inserted into the infected erythrocyte surface and the transport of this phospholipid analogue through the erythrocyte membrane was followed up during 48 h of the asexual erythrocyte cycle. The lipid probe was transferred from infected erythrocyte membranes to Maurer’s clefts during merozoite release, thereby indicating that these membranes remained inside host cells after parasite release. Fluorescent structures were never observed inside infected erythrocytes preceding merozoite exit and merozoites released from infected erythrocyte were not fluorescent. However, specific precipitated material was localised bordering the parasitophorous vacuole membrane and tubovesicular membranes when labelled non-infected erythrocytes were invaded by merozoites. It was revealed that lipids were interchangeable from one membrane to another, passing from infected erythrocyte membrane to Maurer’s clefts inside the erythrocyte ghost, even after merozoite release. Maurer’s clefts became photo-converted following merozoite release, suggesting that these structures were in close contact with infected erythrocyte membrane during merozoite exit and possibly played some role in malarial parasite exit from the host cell

    Activation of a PAK-MEK signalling pathway in malaria parasite-infected erythrocytes

    Get PDF
    Merozoites of malaria parasites invade red blood cells (RBCs), where they multiply by schizogony, undergoing development through ring, trophozoite and schizont stages that are responsible for malaria pathogenesis. Here, we report that a protein kinase-mediated signalling pathway involving host RBC PAK1 and MEK1, which do not have orthologues in the Plasmodium kinome, is selectively stimulated in Plasmodium falciparum-infected (versus uninfected) RBCs, as determined by the use of phospho-specific antibodies directed against the activated forms of these enzymes. Pharmacological interference with host MEK and PAK function using highly specific allosteric inhibitors in their known cellular IC50 ranges results in parasite death. Furthermore, MEK inhibitors have parasiticidal effects in vitro on hepatocyte and erythrocyte stages of the rodent malaria parasite Plasmodium berghei, indicating conservation of this subversive strategy in malaria parasites. These findings have profound implications for the development of novel strategies for antimalarial chemotherapy

    PvDBPII elicits multiple antibody-mediated mechanisms that reduce growth in a Plasmodium vivax challenge trial

    Get PDF
    The receptor-binding domain, region II, of the Plasmodium vivax Duffy binding protein (PvDBPII) binds the Duffy antigen on the reticulocyte surface to mediate invasion. A heterologous vaccine challenge trial recently showed that a delayed dosing regimen with recombinant PvDBPII SalI variant formulated with adjuvant Matrix-MTM reduced the in vivo parasite multiplication rate (PMR) in immunized volunteers challenged with the Thai P. vivax isolate PvW1. Here, we describe extensive analysis of the polyfunctional antibody responses elicited by PvDBPII immunization and identify immune correlates for PMR reduction. A classification algorithm identified antibody features that significantly contribute to PMR reduction. These included antibody titre, receptor-binding inhibitory titre, dissociation constant of the PvDBPII-antibody interaction, complement C1q and Fc gamma receptor binding and specific IgG subclasses. These data suggest that multiple immune mechanisms elicited by PvDBPII immunization are likely to be associated with protection and the immune correlates identified could guide the development of an effective vaccine for P. vivax malaria. Importantly, all the polyfunctional antibody features that correlated with protection cross-reacted with both PvDBPII SalI and PvW1 variants, suggesting that immunization with PvDBPII should protect against diverse P. vivax isolates

    A Plasmodium falciparum Host-Targeting Motif Functions in Export during Blood Stage Infection of the Rodent Malarial Parasite Plasmodium berghei

    Get PDF
    Plasmodium falciparum (P. falciparum) secretes hundreds of proteins—including major virulence proteins—into the host erythrocyte. In order to reach the host cytoplasm, most P. falciparum proteins contain an N terminal host-targeting (HT) motif composed of 11 amino acids. In silico analyses have suggested that the HT motif is conserved throughout the Plasmodium species but experimental evidence only exists for P. falciparum. Here, we show that in the rodent malaria parasite Plasmodium berghei (P. berghei) a reporter-like green fluorescent protein expressed by the parasite can be exported to the erythrocyte cytoplasm in a HT-specific manner. This provides the first experimental proof that the HT motif can function as a signal for protein delivery to the erythrocyte across Plasmodium species. Further, it suggests that P. berghei may serve as a model for validation of P. falciparum secretome proteins. We also show that tubovesicular membranes extend from the vacuolar parasite into the erythrocyte cytoplasm and speculate that these structures may facilitate protein export to the erythrocyte

    Bidirectional intraflagellar transport is restricted to two sets of microtubule doublets in the trypanosome flagellum

    Get PDF
    Intraflagellar transport (IFT) is the rapid bidirectional movement of large protein complexes driven by kinesin and dynein motors along microtubule doublets of cilia and flagella. In this study, we used a combination of high-resolution electron and light microscopy to investigate how and where these IFT trains move within the flagellum of the protist Trypanosoma brucei. Focused ion beam scanning electron microscopy (FIB-SEM) analysis of trypanosomes showed that trains are found almost exclusively along two sets of doublets (3–4 and 7–8) and distribute in two categories according to their length. High-resolution live imaging of cells expressing mNeonGreen::IFT81 or GFP::IFT52 revealed for the first time IFT trafficking on two parallel lines within the flagellum. Anterograde and retrograde IFT occurs on each of these lines. At the distal end, a large individual anterograde IFT train is converted in several smaller retrograde trains in the space of 3–4 s while remaining on the same side of the axoneme

    Plasmodium falciparum variant STEVOR antigens are expressed in merozoites and possibly associated with erythrocyte invasion

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Plasmodium falciparum </it>STEVOR proteins, encoded by the multicopy <it>stevor </it>gene family have no known biological functions. Their expression and unique locations in different parasite life cycle stages evoke multiple functionalities. Their abundance and hypervariability support a role in antigenic variation.</p> <p>Methods</p> <p>Immunoblotting of total parasite proteins with an anti-STEVOR antibody was used to identify variant antigens of this gene family and to follow changes in STEVOR expression in parasite populations panned on CSA or CD36 receptors. Immunofluorescence assays and immunoelectron microscopy were performed to study the subcellular localization of STEVOR proteins in different parasite stages. The capacity of the antibody to inhibit merozoite invasion of erythrocytes was assessed to determine whether STEVOR variants were involved in the invasion process.</p> <p>Results</p> <p>Antigenic variation of STEVORs at the protein level was observed in blood stage parasites. STEVOR variants were found to be present on the merozoite surface and in rhoptries. An insight into a participation in erythrocyte invasion was gained through an immunofluorescence analysis of a sequence of thin slides representing progressive steps in erythrocyte invasion. An interesting feature of the staining pattern was what appeared to be the release of STEVORs around the invading merozoites. Because the anti-STEVOR antibody did not inhibit invasion, the role of STEVORs in this process remains unknown.</p> <p>Conclusion</p> <p>The localization of STEVOR proteins to the merozoite surface and the rhoptries together with its prevalence as a released component in the invading merozoite suggest a role of these antigens in adhesion and/or immune evasion in the erythrocyte invasion process. These observations would also justify STEVORs for undergoing antigenic variation. Even though a role in erythrocyte invasion remains speculative, an association of members of the STEVOR protein family with invasion-related events has been shown.</p

    Flagellar incorporation of proteins follows at least two different routes in trypanosomes

    Get PDF
    International audienceBackground information: Eukaryotic cilia and flagella are sophisticated organelles composed of several hundreds of proteins that need to be incorporated at the right time and the right place during assembly.Results: Two methods were used to investigate this process in the model protist Trypanosoma brucei: inducible expression of epitope-tagged labelled proteins and fluorescence recovery after photobleaching of fluorescent fusion proteins. This revealed that skeletal components of the radial spokes (RSP3), the central pair (PF16) and the outer dynein arms (DNAI1) are incorporated at the distal end of the growing flagellum. They display low or even no visible turnover in mature flagella, a finding further confirmed by monitoring a heavy chain of the outer dynein arm. In contrast, the membrane-associated protein arginine kinase 3 (AK3) showed rapid turnover in both growing and mature flagella, without particular polarity and independently of intraflagellar transport.Conclusion: These results demonstrate different modes of incorporation for structural and membrane-associated proteins in flagella.Significance: The existence of two distinct modes for incorporation of proteins in growing flagella suggests the existence of different targeting machineries. Moreover, the absence of turnover of structural elements supports the view that the length of the mature flagellum in trypanosomes is not modified after assembly
    corecore