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Abstract 

Background information. Eukaryotic cilia and flagella are sophisticated organelles composed 

of several hundreds of proteins that need to be incorporated at the right time and the right 

place during assembly.  

Results. Two methods were used to investigate this process in the model protist Trypanosoma 

brucei: inducible expression of epitope-tagged labelled proteins and fluorescence recovery 

after photobleaching (FRAP) of fluorescent fusion proteins. This revealed that skeletal 

components of the radial spokes (RSP3), the central pair (PF16) and the outer dynein arms 

(DNAI1) are incorporated at the distal end of the growing flagellum. They display low or 

even no visible turnover in mature flagella, a finding further confirmed by monitoring a heavy 

chain of the outer dynein arm. In contrast, the membrane-associated protein arginine kinase 3 

(AK3) showed rapid turnover in both growing and mature flagella, without particular polarity 

and independently of intraflagellar transport.  

Significance. These results demonstrate different modes of incorporation for structural and 

membrane-associated proteins in flagella, indicating their likely reliance on different 

machinery. The absence of turnover of structural elements supports the view that the length of 

the mature flagellum in trypanosomes is not modified after assembly.  
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Introduction 

 

Cilia and flagella are ubiquitous organelles whose architecture is highly conserved, from 

protists to mammals. The distinction between cilia and flagella is mostly historical, as both 

organelles display a common architecture: cilia and flagella elongate their microtubules from 

a basal body forming a cylindrical structure termed the axoneme, composed of 9 doublets of 

microtubules. Most motile cilia exhibit a 9+2 structure, in which the axoneme surrounds a 

central pair of single microtubules. There are a few exceptions however, most strikingly the 

motile 9+0 cilia of the embryonic node (Nonaka et al., 1998) and the atypical spermatozoa of 

insects (Mencarelli et al., 2008). Various microtubule-associated appendages are involved in 

ciliary beating. Some generate the force necessary for motility such as outer dynein arms and 

inner dynein arms, while others regulate motor activity such as radial spokes and central pair 

projections. On the contrary, primary cilia have a 9+0 axoneme, lack dynein arms and do not 

appear to be motile. Defects in flagellum assembly or function have been linked to an 

increasing number of genetic diseases collectively termed ciliopathies, such as for example 

primary ciliary dyskinesia, polycystic kidney disease, retinitis pigmentosa or the Bardet-Biedl 

syndrome (Huber and Cormier-Daire, 2012; Reiter and Leroux, 2017). 

Cilia and flagella are complex organelles, composed of over 500 proteins (Pazour et 

al., 2005; Smith et al., 2005; Broadhead et al., 2006; Oberholzer et al., 2011; Subota et al., 

2014), that must be incorporated into the flagellar axoneme, membrane or matrix. Cilia and 

flagella constitute a distinct compartment, as their content is separated from the rest of the 

cytoplasm by a barrier, or ciliary gate, positioned between the transition zone and the plasma 

membrane (Reiter et al., 2012). Since the cilium lacks ribosomes, its proteins must be 

synthesised in the cytoplasm prior to entry and incorporation into the organelle. This raises 
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the issue of protein targeting and incorporation to the organelle during both construction and 

maintenance.  

Intraflagellar transport (IFT) is a key process involved in flagellar construction. First 

identified in the green alga Chlamydomonas reinhardtii (Kozminski et al., 1993), it refers to 

the bidirectional transport of protein complexes along the axoneme, from the basal body to 

the distal tip of the axoneme and vice-versa, powered by the action of kinesin motors in the 

anterograde direction and dynein motor in the retrograde direction (Ishikawa and Marshall, 

2011). IFT has since been shown to be conserved and essential for the assembly of almost all 

eukaryotic flagella (Hao and Scholey, 2009), and inhibition of IFT prevents flagellum 

assembly in most organisms studied so far (Kozminski et al., 1995; Nonaka et al., 1998; 

Brown et al., 1999; Han et al., 2003; Kohl et al., 2003). The canonical model for flagellum 

assembly proposes that flagellar components are transported by IFT to the distal tip of the 

flagellum, which is the site of construction of the organelle (Craft et al., 2015). Yet so far 

distal incorporation during flagellum construction has been formally demonstrated for 

relatively few structural proteins: alpha tubulin and the radial spoke protein RSP3 in 

Chlamydomonas (Johnson and Rosenbaum, 1992), and the PFR2 and KMP11 proteins in 

Trypanosoma brucei (Bastin et al., 1999a) (Zhou et al., 2015). In Chlamydomonas, analysis 

of dikaryons between wild-type and strains with various defects in structural elements, or with 

a tagged version of a given protein, revealed various profiles: addition at the distal end for 

tubulin, RSP3 (Johnson and Rosenbaum, 1992), the inner dynein arm subunit p28 (Piperno et 

al., 1996), the central pair protein PF6 (Lechtreck et al., 2013) or the dynein regulatory 

complex (DRC) subunit 4 (Bower et al., 2013). By contrast, proximal incorporation was 

observed for the docking complex of the outer dynein arm (Owa et al., 2014), and 

intercalation of the IC69 component was reported the outer dynein arm (Piperno et al., 1996) . 

Lateral diffusion has also been reported for the membrane protein Smoothened (Milenkovic et 
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al., 2009). More recently proximal incorporation was demonstrated for the components of the 

associated flagellum attachment zone in Trypanosoma brucei (Zhou et al., 2015)(Sunter et al., 

2015). The mode of incorporation could depend on the type of protein and on its final 

location. 

In order to investigate the site of incorporation of various flagellar proteins and their 

dynamics, we turned to the protist T. brucei, the etiological agent of sleeping sickness in 

Africa that is a very amenable model for studying cilium biology (Vincensini et al., 2011). It 

possesses a single flagellum that remains present throughout the cell cycle and is composed of 

a typical 9+2 axoneme with central pair, dynein arms and radial spokes (Langousis and Hill, 

2014), which is flanked by a lattice-like structure called the ParaFlagellar Rod (PFR)(Portman 

and Gull, 2010). The trypanosome assembles its new flagellum whilst maintaining the 

existing one, offering the opportunity to compare in the same cell an elongating flagellum 

with a flagellum undergoing maintenance. Moreover, the axoneme contains specific 

subdomains identified with unique proteins such as FLAM6 (restricted to the proximal part) 

and FLAM8 (only present at the distal tip)(Subota et al., 2014). This restricted protein 

localisation has also been reported in other eukaryotes including humans (Fliegauf et al., 

2005; Yagi et al., 2009). Since multiple reverse genetics and imaging tools are available, 

trypanosomes are perfectly suited to study protein incorporation and turnover (Julkowska and 

Bastin, 2009; Oberholzer et al., 2009).  

Here, we investigated the mode of addition to the growing flagellum of three proteins 

belonging to distinct elements of the axoneme (radial spokes, central pair, outer dynein arms) 

and of a membrane protein, using two experimental setups based either on rapid inducible 

expression of epitope-tagged versions of flagellar proteins, or on photobleaching experiments. 

The results reveal the existence of different modes of incorporation in both the old and the 
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new flagellum, and highlight slow or no dynamics for structural proteins compared to the 

membrane protein that was studied. 

 

Results 

 

Assembly of radial spoke and central pair proteins 

Radial spoke protein 3 (RSP3) incorporation into the growing flagellum of Chlamydomonas 

has been unambiguously shown to be distal (Johnson and Rosenbaum, 1992). Hence, we 

decided to first focus on this well-characterised protein to confirm that its mode of 

incorporation is indeed conserved in T. brucei. RSP3 is conserved in trypanosomes and its 

knockdown leads to the absence of radial spokes accompanied by a pronounced motility 

phenotype (Ralston et al., 2006). Flagellar incorporation of RSP3 was investigated using a 

strain expressing a Ty1 tagged version of the RSP3 protein (N-terminal tagging) under the 

control of a tetracycline inducible trypanosome promoter. The plasmid was transfected in a 

cell line constitutively expressing the tet-repressor, so that the promoter is silent under normal 

culture conditions, but can be rapidly activated upon addition of tetracycline (Wirtz and 

Clayton, 1995; Bastin et al., 1999a; Sunter et al., 2015).  

This system allows the visualisation of recently synthesised proteins and the 

monitoring of their location during flagellum construction. Since the old flagellum is 

maintained while the new one is assembled, it is possible to monitor the fate of newly 

synthesised proteins within both flagella, and thus assess protein turnover in the mature 

flagellum. The strain displayed normal growth rate, unaltered by the addition of tetracycline, 

showing that the epitope-tagged protein is not toxic (data not shown). Western blotting with 

the Ty1 epitope tag specific monoclonal antibody BB2 was used to assess the incorporation of 

the tagged protein to the axoneme. Samples were treated with 1% NP40 to separate a 
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cytoskeleton and a soluble fraction (Robinson et al., 1991). In non-induced cells, the level of 

TY1::RSP3 was low but detectable, indicating a slight leakiness of the system as previously 

reported (Wirtz and Clayton, 1995). Cells were induced for one hour by addition of 

tetracycline, leading to an increase in the amount of tagged protein (Figure 1A). The 

TY1::RSP3 protein fractionates in the cytoskeletal fraction (lanes C), confirming its 

incorporation to the axoneme. As observed for other axoneme or PFR proteins (Bastin et al., 

1998; Baron et al., 2007; Kabututu et al., 2010; Ralston et al., 2011), the soluble pool turned 

out to be either absent or below detection level. However, these cells are not synchronised and 

the existence of a soluble pool during a brief phase of the cell cycle cannot be formally 

excluded. These results validate the strain as inducible, with expression kinetics compatible 

with flagellar assembly that takes 4-5 hours in cultured trypanosomes (Sherwin and Gull, 

1989; Bastin et al., 1999a). In our experimental setup, the expression of the TY1::RSP3 

tagged protein can be induced in just an hour, implying that its localisation provides a marker 

of recently synthesised proteins. As the pool of soluble flagellar proteins is low, newly 

synthesised proteins should also represent recently assembled material.  

In order to determine the site of incorporation of RSP3, cells were induced with 

tetracycline, and TY1::RSP3 localisation was monitored over time by IFA. Cells were treated 

with 1% Nonidet prior to methanol fixation, in order to solubilise the cytoplasm and non-

incorporated material. The remaining cytoskeletons were double labelled with BB2 to 

visualize the newly incorporated tagged RSP3, and with mAb25, an axoneme marker (Pradel 

et al., 2006). Observations were focused on bi-flagellated cells, in which the new assembling 

flagellum can be distinguished from the old flagellum based on its posterior position and its 

shorter length (Figure 1B) (Sherwin and Gull, 1989). Short incubations with tetracycline (1h) 

lead to expression of the fusion protein that was mostly localised at the distal tip of the new 

flagellum (Figure 1C, top panel). This profile was reproduced after 1h30 min of growth in the 
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presence of tetracycline, where quantification revealed that more than 95% of the cells 

exhibited this staining profile (n=53). The remaining cells possessed a short flagellum that 

was fully stained, presumably because its assembly was initiated during the induction period 

(Figure 1C left panel). The length of the labelled segment increased with the duration of 

growth in the presence of tetracycline, in agreement with flagellar elongation rate. The length 

of the new flagellum segment showing bright positive signal was measured to 3.9 ± 0.3 µm 

(induction for 1h, n=45), 4.6 ± 0.3 µm (1h30, n=53) and 7.1 ± 0.5 µm (2h30, n=35), in good 

agreement with an elongation rate of 3.6 µm per hour (Bastin et al., 1999a). After 4h of 

growth in the presence of tetracycline, a large segment of the distal part of long flagella was 

stained (Figure 1C, bottom panels). In all cases, the signal is resistant to detergent, showing 

that the tagged protein is indeed incorporated in the axoneme. These data support the view 

that radial spoke proteins are added to the distal end of the growing flagellum in 

trypanosomes. 

We next wondered whether a protein located within a different sub-region of the 

axoneme could undergo a different mode of incorporation. We therefore investigated PF16, a 

well-characterised protein of the central pair (Smith and Lefebvre, 1996; Sapiro et al., 2002; 

Branche et al., 2006; Ralston et al., 2006), whose central position is more distant from the 

microtubule doublets that carry IFT particles. The same approach was used to generate an 

inducible cell line expressing Ty1-tagged PF16 upon addition of tetracycline. The strain 

displayed normal growth rate, unaltered by the addition of tetracycline, suggesting that the 

tagged protein is not toxic (data not shown). Expression was first monitored by western 

blotting, using the Ty1 tag specific antibody BB2 (Figure 2A). In non-induced cells, a low 

amount of tagged PF16 is visible, but upon tetracycline addition, the level of the protein 

increases slowly and reaches much higher levels after the cells have been induced for over 

48h. The protein is restricted to the cytoskeletal fraction and is not detected within the soluble 
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fraction. These results validate the strain as inducible, with kinetics acceptable for 

investigation of protein localisation during flagellum construction.  

In order to determine the site of incorporation of PF16, cells were induced with 

tetracycline for 1 to 3h, and Ty1::PF16 expression was monitored over time by IFA. Cells 

were treated with 1% Nonidet prior to methanol fixation, in order to confirm axonemal 

incorporation. Slides were analysed by IFA double labelled with BB2, to visualize the newly 

incorporated tagged PF16, and with the flagellar marker mAb25. Short incubations with 

tetracycline (1h and 1h30 min) did not lead to detectable expression of Ty1::PF16 (data not 

shown). After 2h30 min of induction, the fusion protein was detected at the distal tip of the 

new flagellum (Figure 2B). Moreover, this signal was resistant to detergent, showing that the 

protein is indeed incorporated in the axoneme. A weak signal could be detected in the old 

flagellum, corresponding to a low level of expression of Ty1::PF16 due to a slight leakiness 

of the inducible system (as also observed on the western blot), but it did not show a particular 

polarity (Figure 2B). These results demonstrate that central pair proteins are added to the 

distal end of the elongating flagella, as observed for radial spokes. 

 

Photobleaching analysis of a dynein arm component during flagellum construction and 

maintenance 

We next investigated the incorporation of a component of the outer dynein arm, the dynein 

intermediate chain 1 (DNAI1), which is located in the periphery of the axoneme (Branche et 

al., 2006). We developed a cell line where DNAI1 is endogenously tagged with GFP for 

photobleaching analysis. Western blotting analysis was performed with an anti-GFP, or with a 

mouse anti-DNAI1 polyclonal antibody (Duquesnoy et al., 2009) on total protein samples, 

cytoskeletal and detergent-soluble fractions (Figure 3A). The fusion protein was detected with 

both antibodies, whereas the untagged endogenous DNAI1 only reacted with the anti-DNAI1 
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antibody. This revealed that the fluorescent version represents about half of the endogenous 

one. Both proteins showed the same distribution profile with more material in the cytoskeletal 

fraction than in the soluble fraction (Figure 3A) as previously observed (Duquesnoy et al., 

2009). Live video-microscopy showed that, as expected, the protein is constitutively 

expressed and localises to both old and new flagella (Figure 3B). 

DNAI1 flagellar incorporation and dynamics were investigated using fluorescence 

recovery after photobleaching (FRAP). In bi-flagellated cells, the fluorescent signal was 

bleached in both flagella and fluorescence recovery was monitored simultaneously in the 

mature and in the elongating flagellum. We decided to photobleach the new flagellum in its 

entirety but only half of the old flagellum, hence leaving a positive signal to control for 

bleaching due to laser exposure and to facilitate cell detection. Evolution of the fluorescent 

signal was monitored for up to 2h. In all cases, no recovery was detected in the old flagellum 

(Figure 3B). By contrast, a fluorescent signal became detectable in the new flagellum from 

half an hour after photobleaching (Figure 3B, time 33 minutes). It was mostly present towards 

the distal tip, but some signal was also detected towards the proximal part (Figure 3B). A 

clear gradient was visible at later time points with stronger signal at the distal tip (Figure 3B). 

The new flagellum showed signs of conspicuous elongation during the course of the 

experiment and so the bright signal corresponds to the incorporation of new GFP::DNAI 

proteins on the growing axoneme. Presence of a positive (albeit less bright) signal in the 

adjacent proximal region that was already assembled before the bleach could reflect either 

turnover of material that had already been incorporated or completion of the assembly by an 

intercalation process. This suggests a clear difference in protein dynamic between the new 

flagellum and the old flagellum where no turnover is observed.  

However, turnover could still occur at the distal end of the mature flagellum, that is 

known to be highly dynamic in some species such as Chlamydomonas (Marshall and 
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Rosenbaum, 2001), or C. elegans (Hao et al., 2011). To investigate whether dynein turnover 

may occur in the distal portion of the flagellum of T. brucei, the fluorescent signal was 

bleached at the distal tip of the flagellum in cells expressing GFP::DNAI1, and fluorescence 

recovery was monitored. No recovery could be detected at the distal tip (Supplementary 

Figure 1). This experiment was reproduced using a cell line expressing the dynein heavy 

chain ODA-B fused to mNeonGreen following in situ tagging at the 5’ end of the gene (Shen 

et al., 2001). The distal end of the mature flagellum was bleached (Figure 4A) and recovery 

was monitored over 45min (Figure 4B-G). Again, no recovery was observed. These results 

demonstrate that both the heavy and the intermediate dynein chains undergo little or no turn 

over at the distal tip of the flagellum, supporting the view that, once assembled, mature 

trypanosome flagella do not modify their length (Ooi and Bastin, 2013). 

Overall these results show that the structural proteins of the axoneme studied so far 

mostly follow a distal pattern of incorporation, with a slight variation for the outer dynein arm 

DNAI1 protein that appears to also undergo intercalation or turnover at the proximal part of 

the elongating flagellum.  

 

The flagellum membrane-associated protein AK3 shows fast and non-polarised 

incorporation in growing or mature flagella 

A recent study indicated that flagellar proteins display diverse dynamic behaviours depending 

on their flagellar localisation (Subota et al., 2014). To investigate this phenomenon, we turned 

towards a novel flagellum membrane protein called arginine kinase 3 (AK3) (Oberholzer et 

al., 2011; Voncken et al., 2013; Subota et al., 2014; Ooi et al., 2015). In contrast to structural 

axonemal proteins, detergent extraction localised AK3 exclusively to the soluble fraction and 

IFA data unambiguously revealed that AK3 co-localises with the flagellum membrane and 

wraps around all flagellar structural elements such as the axoneme and the PFR (Subota et al., 
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2014). The staining is distinct from that observed for intraflagellar proteins and is sensitive to 

detergent treatment (Subota et al., 2014). This staining profile is very similar to that observed 

for the flagellar membrane proteins calflagins (Maric et al., 2011). The T. brucei genome 

contains 3 genes encoding closely related proteins for arginine kinase that differ in their N- or 

C-termini sequences (Miranda et al., 2009). These sequences are responsible for differential 

locations: AK1 is in the cytosol, AK2 is in the glycosomes and AK3 is in the flagellum 

membrane (Voncken et al., 2013; Ooi et al., 2015). RNAi silencing leads to rapid 

disappearance of AK3 in both old and new flagella in less than 4h, corresponding to one third 

of the duration of the cell cycle. This disappearance did not show a particular polarity in IFA 

experiments, suggesting that AK3 might move rapidly in the flagellum membrane (Subota et 

al., 2014). 

An inducible strain expressing AK3::Ty1 under the control of the tetracycline 

repressor was generated in an ak3-/- knockout strain: the tagged protein being expressed in a 

negative genetic background, there is no competition with the endogenous AK3 protein. 

Tetracycline-inducible expression was confirmed by western blotting, using the anti-Ty1 tag 

BB2 antibody and the anti-AK polyclonal antibody (Figure 5A). In non-induced cells, no 

AK3::Ty1 is detectable, neither by BB2 nor by the anti-AK antiserum. Upon tetracycline 

addition, the level of the tagged protein increases rapidly as confirmed by detection with both 

BB2 and the anti-AK antiserum, which detects both AK1/AK2 proteins (these two co-migrate 

at ~40 kDa) and the tagged AK3 protein. These results validate the strain as inducible, with 

fast kinetics compatible with flagellar dynamics.  

Induction experiments were then analysed by IFA with either the BB2 or the anti-AK 

antibody. Upon 30 minutes of induction, both flagella were equally labelled, with no 

significant difference in intensity between them  (Figure 5B). This was consistently observed 

no matter the length of the new flagellum (Figure 5B). Neither a particular polarity nor a 
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gradient could be observed. These results were reproduced using a cell line expressing the 

Ty1-tagged version of AK3 in a background where both AK3 endogenous alleles were still 

present, showing that these distribution profiles are not explained by the fact that AK3 is 

absent from the mature flagella before induction (data not shown). These results illustrate fast 

turn over in both flagella and do not exclude the possibility of rapid exchange between the 

two flagella could also be considered. 

IFT has long been postulated to transport flagellar components within the organelle 

and recent work has shown that several proteins rely on IFT to be maintained at their correct 

location in the flagellum (Fort et al., 2016). The possible contribution of IFT to the flagellar 

incorporation of AK3 was investigated using two tetracycline-inducible RNAi strains: 

IFT88RNAi and IFT140RNAi in which respectively anterograde and retrograde transport are 

inhibited upon knockdown (Kohl et al., 2003; Absalon et al., 2008). Cells were stained with 

the anti-AK antibody and an antibody against the Flagellum Transition Zone Component 

FTZC, as marker of the base of the flagellum (Bringaud et al., 2000). In non-induced 

conditions, the signal covered the flagellum membrane as expected (Figure 6A). Over the 

course of RNAi silencing, the amount of IFT is reduced and cells assemble shorter and shorter 

flagella. However, mature flagella that were assembled prior to initiation of RNAi remain 

present (Figure 6B,C), even though IFT is absent (IFT88 knockdown), or arrested (IFT140 

knockdown)(Fort et al., 2016). This system thus allows the investigation of the contribution 

of IFT to flagellar targeting of AK and its distribution within the flagellum. The AK signal 

was retained in all flagella of induced IFT88RNAi and IFT140RNAi cells (arrows on Figures 

6B,C), no matter their length, indicating that flagellar targeting of AK is probably 

independent of IFT. In cells lacking flagella, the signal for AK was significantly increased in 

the cytoplasm (Figure 6B,C). This could correspond to AK3 still being produced and 

accumulating there in the absence of flagellum, or it could represent an increase in the amount 
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of AK1 and AK2 that have been located to the cytoplasm and to glycosomes respectively 

(Voncken et al., 2013). 

 

Discussion 

 

This study revealed two distinct protein behaviours during flagellum construction and 

maintenance. Structural proteins are mostly added at the distal end of the elongating organelle 

with little (if any) turnover in mature flagella, whereas membrane proteins do not show a 

specific polarity during incorporation and exhibit a rapid turnover. Components of the radial 

spokes, the central pair and the dynein arms (RSP3, PF16 and DNAI1) are mainly assembled 

at the distal end of the growing T. brucei axoneme. This is in agreement with the established 

observation for PFR2, a major component of the PFR (Bastin et al., 1999a) and supports the 

view that this mode of incorporation is conserved for components of flagellar skeletal 

structures among eukaryotic species (Rosenbaum et al., 1969; Johnson and Rosenbaum, 1992; 

Lechtreck et al., 2013). The approaches used here have the advantage of visualising addition 

of new subunits in elongating flagella, rather than in the dikaryon experiments where flagella 

are already assembled.  

Distal assembly is compatible with IFT transport of components of the axoneme and 

the PFR. FRAP analyses in Chlamydomonas have convincingly demonstrated transport of 

alpha-tubulin, dynein regulatory complex components and PF16 in growing and mature 

flagella (Wren et al., 2013; Craft et al., 2015). So far, IFT movement of axoneme or PFR 

proteins has not been shown directly in trypanosomes. Epitope- or YFP-tagged alpha-tubulin 

fails to incorporate into flagellar microtubules, hence hampering direct analysis (Bastin et al., 

1996; Sheriff et al., 2014). Here, monitoring of the elongating flagellum after photobleaching 

of the GFP::DNAI1 signal failed to reveal IFT-type movement. This could be explained by 
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technical reasons if the amount of DNAI1 per IFT train was too low to be detected, or if the 

association of the cargo to the IFT train complex interfered with the ability of GFP to 

fluoresce.  

Alternatively, outer dynein arms might not rely on IFT for transport in the 

trypanosome flagellum. In Chlamydomonas, analysis of dikaryons between dynein arm and 

IFT mutants suggested that inner dynein arms, but not outer dynein arms, require a functional 

IFT kinesin for correct incorporation (Piperno et al., 1996). However, further work has shown 

that outer dynein arm addition was dependent on IFT46 (Hou et al., 2007) and the IFT-

associated adaptor protein ODA16 (Ahmed et al., 2008). These data support a contribution of 

IFT, but visualisation of the way ODA components move within the flagellum will be needed 

to formally prove whether they are transported by IFT or by other means. For example, the 

distal protein EB1 is added at the distal end of axonemal microtubules independently of IFT 

(Harris et al., 2016). 

Transport of flagellar precursors was suggested in the PFR2RNAi mutant that fails to 

assemble a normal PFR (Bastin et al., 1998) in which other PFR proteins are found at the 

distal end of the flagellum where they accumulate over the course of organelle assembly. This 

material is not incorporated in any structure and is lost after cell division (Bastin et al., 

1999b). However, formal evidence of IFT-like movement of PFR precursors is still lacking 

and the possibility of diffusion (Ye et al., 2013), or the use of other types of motor systems 

(Demonchy et al., 2009) cannot be ruled out. 

Although distal incorporation of structural axoneme proteins was the major trend in 

both series of experiments (inducible expression of tagged proteins and FRAP experiments), 

some signal was detected towards the proximal part of the assembling flagellum for DNAI1, 

often visible as a gradient starting from the distal region. One could imagine that the majority 

of the material destined for incorporation is delivered at the distal tip to be associated to 
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“naked”, recently elongated microtubule segments but that some material is released from the 

IFT train prior to reaching the tip of the flagellum. These proteins would serve for completion 

of the assembly or for turnover. This hypothesis is supported by the relative structural 

disorganisation found in the terminal portion of the new flagellum of T. brucei perhaps 

because assembly of all subcomponents is not complete (Hoog et al., 2014). In this context, it 

should be pointed out that in Chlamydomonas, DRC4 can dissociate from IFT trains at 

various sites along the flagellum and not always at the distal tip (Wren et al., 2013).  

The situation turned out to be very different for the membrane-associated flagellar 

protein AK3, where no polarity could be detected during assembly of the flagellum. AK3 is 

found all along the flagellum membrane without any specific association to a defined 

substructure (Subota et al., 2014). It is likely associated to the membrane by prenylation, as 

suggested by the presence of a typical flagellum-targeting signal at its amino-terminus (Ooi et 

al., 2015) similar to that found in calflagins (Godsel and Engman, 1999; Maric et al., 2011). 

These proteins presumably associate first to the cell body membrane and then to the flagellum 

membrane (Emmer et al., 2009). Although direct trafficking studies of calflagins have not 

been reported, these proteins likely reach the flagellum by its base and then could either 

diffuse within the organelle, or be associated or transported by systems yet to discover. In 

cultured mammalian cells, two trans-membrane proteins (the somatostatin receptor 3 and 

Smoothened, the Hedgehog transducer) appeared to diffuse freely within the primary cilium 

(Ye et al., 2013). RNAi showed that all the AK3 flagellar protein pool is turned over in less 

than 4 h (Subota et al., 2014), which is less than half of the trypanosome cell cycle. This 

shows that the old flagellum is dynamic with regards to rapid replacement of at least certain 

membrane proteins. AK3 is a phosphagen shuttle and has been proposed to contribute to 

flagellum motility (Voncken et al., 2013; Ooi et al., 2015). Since both flagella appear equally 

motile, the requirements for AK3 could be similar.   
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During half of their cell cycle, trypanosomes possess two basal bodies and two 

flagella, one undergoing construction and one that is already fully assembled (Sherwin and 

Gull, 1989). As discussed above, newly synthesised subunits for structural proteins are mostly 

targeted to the new flagellum with weak amounts reaching the old flagellum. In mature 

flagella of Chlamydomonas, the degree of protein exchange turned out to be highly variable: 

some axonemal proteins hardly showed any turnover, whereas others were totally replaced 

during the life of the flagellum (Song and Dentler, 2001). Protein exchange requires the 

existence of a soluble pool of material that could not be detected in the case of PFR (Bastin et 

al., 1998) or DRC proteins (Kabututu et al., 2010; Ralston et al., 2011), but exists in 

significant amounts for the dynein component LC1 (Ralston et al., 2011), and to a lesser 

extent for the inner dynein arm component 5 (Wei et al., 2014) and for DNAI1 (Duquesnoy et 

al., 2009). A large soluble pool might not be necessary providing that mRNA is available and 

that translation produces protein that is immediately used for turnover. Analysis of mRNA 

content at different cell cycle stages from trypanosomes that had been synchronised by 

elutriation revealed that many flagellar genes are up-regulated during flagellum synthesis 

(Archer et al., 2011). Moreover, the timing of the expression peaks reflects that of flagellum 

construction: transcripts for basal body and IFT proteins emerge first, followed by those for 

axonemal proteins and ultimately those for PFR proteins (Morga and Bastin, 2013).  

Finally, the absence of turnover of both the heavy and the intermediate dynein chains 

supports the view that the length of the mature flagellum in trypanosomes is fixed (Ooi and 

Bastin, 2013). This finding explains that absence or arrest of IFT in mature flagella had no 

effect on their length, contrarily to the growing flagellum (Fort et al., 2016). This means that 

the control of flagellum length is different compared to what has been described for 

Chlamydomonas, where flagellar length is regulated by a dynamic balance of assembly 
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(relying on IFT for continuous delivery of tubulin) and disassembly at the distal end (Marshall 

and Rosenbaum, 2001). 
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Materials and methods  

Trypanosome cell line and culture— For inducible expression, procyclic trypanosome cell 

lines were generated from the PTH cell line, a derivative of strain 427 that constitutively 

expresses the tet-repressor (Bastin et al., 1999a). IFT88RNAi (Kohl et al., 2003) and IFT140RNAi 

(Absalon et al., 2008) strain have been described previously. They were cultured in SDM-79 

(Brun and Schonenberger, 1979) supplemented with hemin and 10 % fetal bovine serum, with 

the exception of the inducible cell line expressing the AK3::Ty1 protein that was grown in 

SDM79 supplemented with 20 mM glycerol (Ooi et al., 2015). The AnTat1.1 strain was used 

for expression of mNeonGreen::DHCODAB. Long primer PCR transfections were performed 

in bloodstream form parasites cultured in HMI-11 medium prior to differentiation into 

procyclic stage parasites. Bloodstream pleomorphic parasites were differentiated by addition 

of 5 µM 8-pCPT-2-O-methyl-5-AMP to 105 parasites per ml in 10 ml of HMI-11. Parasites 

were cultured for 48 hours to induce stumpy formation followed by transfer to SDM-79 

medium supplemented with 20mM glycerol and 6mM cis-aconitate at 106 parasites per ml 

and transferred to a 27°C incubator for 72h, after which time cells were cultured in SDM-79 

supplemented with 20mM glycerol. Cell numbers in culture was determined using the Z2 cell 

counter (Beckman Coulter).  

 

Expression of Ty1 and fluorescent fusion proteins —Expression of Ty1-tagged flagellar 

proteins was achieved with the pHD430 plasmid that contains the full gene sequence fused to 

the Ty1 tag in 5´ (RSP3) or 3´ (PF16) positions, under the control of the tetracycline-inducible 

EP promoter (Bastin et al., 1999a). All the sequence fragments were chemically synthesized 

by GeneCust Europe (Dudelange, Luxembourg) and sub-cloned into the pHD430 vector. For 

the generation of cell lines expressing these Ty1 fusion proteins, linearized pHD430 vectors 

were nucleofected into PTH cells that express the tetracycline-repressor by targeting the 
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inverted spacer of the ribosomal DNA that is supposed to be silent (Wirtz and Clayton, 1995). 

For endogenous tagging of DNAI1, the first 400 bp of the gene were cloned in the 

pPCPFRGFPDHC1b vector (Blisnick et al., 2014) and integrated in the genome following 

linearization within the DNAI1 sequence. For in situ tagging of DHC-ODAB 

(Tb927.11.3250), primers matching the p2675mNeonGreenIFT81 plasmid were designed 

with 80bp extensions covering the last 80 bp of the 5’UTR sequence (CGT GTC CGT AGG 

TGG AAC GAT TAA GCA ACG AGA AGA GGA GTT ACG TAA ATC AAA CAA GCA 

AAC TAA GGA AAG GAA CCC CGC CTA AAG TCG AGG AGG TTG A) and the first 80 

bp of the DHC-ODAB coding sequence ((TTT AAC CCG GTA ATG ATG CGC TGC TCA 

AGC CAC TGA ACA CGC CTA TCG ACG GGT GCC TCT TCC TTG TCG CCC TTC 

GCC ATG TCA AGT GGG TCC TGG TTA G), hence amplifying the puromycin drug 

resistance cassette, the splicing sequence, a Ty-1 tag and the mNeonGreen sequence. 

Transfections were carried out using Nucleofector® technology (Lonza, Italy)(Burkard et al., 

2007). Transgenic cell lines were selected in medium supplemented with phleomycin (2.5 

µg/ml) or puromycin (1µg/ml) where appropriate.  

 

Tetracycline induction time course 

Tetracycline induction was carried out at a concentration of 1 µg/ml. Cells were grown in 

culture to ~107 cells/ml in SDM79 or SDMG medium prior to commencement of the 

experiment. Non-induced cells were split into separate flasks corresponding to the number of 

time points and induction was initiated in a staggered manner. Upon addition of tetracycline 

(Sigma) to the flask for time 0, cells were harvested for western blotting or 

immunofluorescence assays. 
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Immunoblot analysis— Samples were boiled in Laemmli buffer (2x stock: 0.5 M Tris pH 6.8 

containing 20% Glycerol, 4% DTT, 4% SDS, Bromo-phenol blue) before SDS-PAGE 

separation, loading 40 µg of total cell protein per lane. The Criterion system (Biorad) was 

used for electrophoresis. Proteins were transferred to PVDF membranes (Hybond-P from 

Amersham) in the Criterion blotter (Biorad) for 45 minutes at 100 V constant in TG buffer 

(10x stock: 0.25 mM Tris pH 8.3, 1.92 mM glycine). The membrane was blocked overnight 

with 5 % skimmed milk in PBS and incubated with primary antibodies diluted in 1 % milk 

and 0.1 % Tween20 in PBS for 1 h. Membrane washes were performed with 0.2 % Tween20 

in PBS. Species specific secondary antibodies coupled to HRP (GE Healthcare) were diluted 

1/20,000 in 1 % milk and 0.1 % Tween20 in PBS and incubated with the membranes for 1 h. 

Final detection was carried out by using an ECL kit according to manufacturer’s instructions 

(Amersham) and exposure of Hyperfilm-ECL (Amersham). Antibodies against the 

endoplasmic reticulum component BiP (Bangs et al., 1993) or against the paraflagellar 

proteins (Kohl et al., 1999) were used as loading controls. 

 

Indirect immunofluorescence assay (IFA)—Cultured parasites were washed twice in 

SDM79 medium without serum and spread on poly-L-lysine coated slides (Menzel-Gläser, 

Braunschweig) before fixation. For methanol fixation, parasites were air dried and fixed in 

methanol at – 20 °C for 5 minutes followed by a rehydration step for 15 minutes in PBS. For 

PFA fixation, parasites were left to settle on slides, rinsed in PBS before being incubated for 

30 minutes at room temperature with a 4% PFA solution in PBS at pH 7. After a 

permeabilization step with 0.1% Nonidet P-40 (Fluka) in PBS, samples were blocked for 1 

hour with 1% BSA in PBS. To extract the cytoskeleton and solubilise cytoplasmic contents, 

the cells were left to settle on poly-L-lysine coated slides for 10 minutes, rinsed in PBS and 

treated for 7 seconds with 1% NP40 in PEM buffer (0.1 M PIPES pH 6.9, 2 mM EGTA, 
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1 mM MgSO4). After thorough washes, the samples were fixed in methanol before being 

processed.  

For immunodetection, slides were incubated with the appropriate dilution of the first antibody 

in 0.1% BSA in PBS for 1 hour. MAb25 recognises the axonemal protein TbSAXO1 

(Dacheux et al., 2012) and was used as a marker of the axoneme (Pradel et al., 2006) while 

BB2 served to detect the Ty1 tag (Bastin et al., 1996). After three 5 minute-washes, species 

and subclass-specific secondary antibodies coupled to the appropriate fluorochrome (Alexa 

488, Cy3 or Cy5, Jackson ImmunoResearch) were diluted 1/400 in PBS containing 0.1% BSA 

and were applied for 1 hour. After washing as above, cells were stained with a 1µg/ml 

solution of the DNA-dye DAPI (Roche) and mounted with the ProLong antifade reagent 

(Invitrogen). Slides were analysed with a DMR microscope (Leica) and images captured with 

a CoolSnap HQ camera (Roper Scientific). Image acquisition was controlled using ImageJ  

and images were taken with the threshold set at maximum. Subsequent normalization of 

signals was carried out by parallel manipulation of brightness and contrast against controls, 

and images were superimposed using Photoshop CS4. 

 

Fluorescent Recovery After Photobleaching (FRAP) analysis—The expression of 

GFP::DNAI1 was first observed directly with a DMI4000 Leica microscope using a mercury 

bulb for excitation to verify correct protein expression and localisation. For FRAP analysis of 

cells expressing GDP::DNAI1, a Zeiss inverted microscope (Axiovert 200) equipped with an 

oil immersion objective (magnification x63 with a 1.4 numerical aperture) and a spinning disk 

confocal head (CSU22, Yokogawa) was used (Buisson et al., 2013). Images were acquired 

using Volocity software with an EMCCD camera (C-9100, Hamamatsu) operating in 

streaming mode. A sample was taken directly from the culture grown at 6 to 8 x 106 cells/mL 

and trapped between slide and coverslip. The samples were kept at 27°C using a fast response 
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mini-stage temperature controller. Time-lapse sequences were acquired to analyse GFP signal 

recovery after photobleaching. Movies were taken using a time lapse of 3 minutes. Exposure 

time was 0.8 second per frame (binning was 1x1 pixels). In the case of cells expressing 

mNeonGreen::DHC-ODAB, the same settings were used except that the microscope was 

equipped with a 100x objective (1.4 numerical aperture). In this case, 8 cells were identified 

per series and their position recorded before photobleaching. Sequences of 20 seconds were 

filmed for each with an exposure time of 0.1 second per frame. Time lapse varied between 5 

and 13 minutes.  
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Figure legends 

 

Figure 1 

The radial spoke protein RSP3 is incorporated at the distal tip of the flagellum 

(A) Western blot showing inducible expression of Ty1::RSP3 upon tetracycline induction.  

Total (T), soluble (S) and cytoskeletal (C) protein extracts of non-induced cells (0 h), and 

cells induced for 1 h and 48 h were prepared. The membrane was incubated with the BB2 

monoclonal antibody directed against the Ty1 tag to detect the Ty1::RSP3 fusion protein (top 

panel), or the anti-BiP as a loading and fractionation control (bottom panel).  

(B) In bi-flagellated cells, the new assembling flagellum is posterior to the cell and shorter 

than the old flagellum in maintenance. Cells were fixed in methanol and stained with the 

Mab25 antibody to detect the axoneme (red) and with DAPI (blue).  F: flagellum, N: nucleus, 

K: kinetoplast.  

(C) 1 h-induced and 4 h-induced Ty1::RSP3 cells were treated with 1% NP40 prior to 

methanol fixation, stained with the Mab25 antibody to detect the axoneme (red, left panels) 

and the BB2 antibody to detect Ty1::RSP3 (green, middle panels) then counterstained with 

DAPI (blue). Sites of incorporation of newly synthesised proteins are indicated with long 

white arrows. 

Yellow arrow: new flagellum. White arrow: old flagellum. Scale bar: 5 µm 

 

Figure 2 

The central pair protein PF16 is incorporated at the distal tip of the flagellum 

(A) Western blot showing inducible expression of PF16 upon tetracycline induction.  
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Total (T), soluble (S) and cytoskeletal (C) protein extracts of non-induced cells, and cells 

induced for 1 h, 1.5 h, 2.5 h and 48 h were prepared. The membrane was incubated with the 

BB2 antibody directed against the Ty1 tag to detect the PF16::Ty1 fusion protein (top panel), 

the L13D6 antibody to detect the PFR (middle panel) or the anti-BiP (bottom panel), as 

loading and fractionation controls.  

(B) 2.5-hour-induced PF16::Ty1 cells were treated with 1% NP40 prior to methanol fixation, 

stained with the Mab25 antibody to detect the axoneme (red, left panel) and the BB2 antibody 

to detect Ty1::PF16 (green, middle panels) then counterstained with DAPI (blue, left and 

right panels). The site of incorporation of newly synthesised proteins is indicated with long 

white arrows. A weak homogenous signal can be seen on the old flagellum and corresponds to 

a low level of expression of PF16::Ty1 due to a slight leakiness of the inducible system as 

also observed on the western blot. 

Yellow arrow: new flagellum. White arrow: old flagellum. Scale bar: 5 µm 

 

Figure 3 

The outer dynein arm protein DNAI1 undergoes both distal incorporation and 

intercalation 

FRAP analysis of trypanosomes expressing the GFP::DNAI1 fusion protein. A. Western blot 

showing expression of GFP::DNAI1. Total (T), soluble (S) and cytoskeletal (C) protein were 

prepared. The membrane was incubated with the anti-GFP antibody that detects only the 

GFP::DNAI1 fusion protein (top panel) and then with the anti-DNAI1 antibody that detects 

both the endogenous DNAI1 protein and the GFP::DNAI1 fusion protein (bottom panel). B. 

The new flagellum and the proximal part of the old flagellum were bleached with a brief laser 

pulse (framed area) and recovery was monitored upon acquisition of an image every 3 min, 

for up to 2 h. Pre-bleach situation: old and new flagella are equally positive for GFP::DNAI1. 
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Post-bleach situation: only the second half of the old flagellum remains positive. Recovery of 

fluorescent signals is shown at the indicated times. Cartoons under each panel show the 

situation for old (black) and new (purple) flagella. Closed and open segments are GFP 

positive and negative, respectively. Recovered signal is shown in green. 

Yellow arrow: new flagellum. White arrow: old flagellum. Scale bar: 5 µm 

 

Figure 4 

The outer dynein arm heavy chain B does do not show visible turnover in the mature 

flagellum  

FRAP analysis of trypanosomes expressing the GFP::DHCODAB fusion protein. The distal 

end of the flagellum was bleached with a brief laser pulse (framed area) and recovery was 

monitored upon acquisition of a series of 20 images at each of the indicated time points. This 

is a typical example out of 14 cells from 2 different experiments. A. Pre-bleach situation: the 

flagellum is positive along its length. Darker areas correspond to regions that are not in the 

focal plane. B. Post-bleach situation: only the proximal part of the flagellum remains positive. 

The length of the fluorescent portion has been measured and is indicated at the bottom of each 

image. C-G. The fluorescent signal is shown at the indicated times. No recovery could be 

detected in the flagellum. The thin fluorescent portion corresponds to the anterior end of the 

cell body and not the flagellum. Scale bar: 5 µm. This is a typical example coming from two 

series with 8 cells each.  

 

Figure 5 

The flagellum membrane AK3 shows fast and non-polarised incorporation in growing 

and mature flagella. 
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(A) Western blot showing inducible expression of AK3::TY1 upon tetracycline induction. 

Total protein extracts of non-induced cells, and cells induced for 2 and 4h were prepared. The 

membrane was incubated with the BB2 antibody directed against the Ty1 tag, to detect the 

AK3::Ty1 fusion protein (bottom panel), the anti-AK antibody (middle panel) and the L13D6 

antibody (top panel) to detect the PFR as a loading control.  

 (B) 30-min-induced AK3::Ty1 cells were subjected to PFA fixation, and stained with the 

BB2 antibody to detect Ty1::AK3 (green) then counterstained with DAPI. Cells are shown at 

different time points of the cell cycle (1K1N, 2K1N, 2K2N). 

Scale bar: 5 µm  

 

Figure 6  

Entry and maintenance of AK3 in the flagellum does not rely on IFT 

IFT140RNAi and IFT88RNAi cells were grown in the absence of tetracycline (no RNAi, A) or in 

the presence of tetracycline for 48h (B-C). Cells were stained with an anti-AK antibody and 

with the flagellum transition zone component (FTZC), as a marker of the base of the 

flagellum. The right panel shows the phase contrast image merge with DAPI (cyan) to reveal 

nuclear and kinetoplast DNA. The left panel shows the immunofluorescence images with the 

anti-AK (that detects all three AK proteins) in green and the anti-FTZC in red. Arrows 

indicate remaining flagella in the induced sample that all remain positive for arginine kinase. 

Note the increase of arginine kinase signal in the cytoplasm in induced samples. Scale bar: 

5 µm. 

 

Supplementary figure 1 

 Outer dynein arm intermediate chain DNAI1 does not show visible turnover in the 

mature flagellum  
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FRAP analysis of trypanosomes expressing the GFP::DNAI1 fusion protein. The distal end of 

the mature flagellum was bleached with a brief laser pulse (framed area) and recovery was 

monitored upon acquisition at the indicated time points (one typical example out of 5 videos). 

A. Pre-bleach situation: the flagellum is positive along its length. B. Post-bleach situation: 

only the proximal part of the flagellum remains positive. The length of the fluorescent portion 

has been measured and is indicated at the bottom of each image. C-G. The fluorescent signal 

is shown at the indicated times. No recovery could be detected in the distal portion of the 

flagellum. Scale bar: 5 µm. This is a typical example coming from two series with 3 cells 

each.  
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Graphical abstract 
 
Cilia and flagella are composed of hundreds of different proteins found in a sophisticated 

skeletal structure called axoneme, in the matrix and in the membrane. Incorporation of new 

skeletal components takes place at the distal end of growing flagella and shows little or no 

turnover in mature flagella. In contrast, the membrane-associated protein arginine kinase 3 

(AK3) displays rapid turnover without a specific polarity in both mature and growing flagella. 

	
	
	
 

	
	


