65 research outputs found
Primers for Castilleja and their Utility Across Orobanchaceae: II. Single‐copy nuclear loci
Premise of the study: We developed primers targeting nuclear loci in Castilleja with the goal of reconstructing the evolutionary history of this challenging clade. These primers were tested across other major clades in Orobanchaceae to assess their broader utility.Methods and Results: We assembled low-coverage genomes for three taxa in Castilleja and developed primer combinations for the single-copy conserved ortholog set (COSII) and the pentatricopeptide repeat (PPR) gene family. These primer combinations were designed to take advantage of the Fluidigm microfluidic PCR platform and are well suited for high-throughput sequencing applications. Eighty-seven primers were designed for Castilleja, and 27 were found to have broader utility in Orobanchaceae.Conclusions: These results demonstrate the utility of these primers, not only across Castilleja, but for other lineages within Orobanchaceae as well. This expanded molecular toolkit will be an asset to future phylogenetic studies in Castilleja and throughout Orobanchaceae
Toward standard practices for sharing computer code and programs in neuroscience
Computational techniques are central in many areas of neuroscience and are relatively easy to share. This paper describes why computer programs underlying scientific publications should be shared and lists simple steps for sharing. Together with ongoing efforts in data sharing, this should aid reproducibility of research.This article is based on discussions from a workshop to encourage sharing in neuroscience, held in Cambridge, UK, December 2014. It was financially supported and organized by the International Neuroinformatics Coordinating Facility (http://www.incf.org), with additional support from the Software Sustainability institute (http://www.software.ac.uk). M.H. was supported by funds from the German federal state of Saxony-Anhalt and the European Regional Development Fund (ERDF), Project: Center for Behavioral Brain Sciences
Bann_spdelim_scripts
All python scripts associated with the genomic analyses for this stud
Bannulata_spdelim_FINAL_intraspecific_arlequin
Arlequin input file of Bartholomea annulata ddRADseq for intraspecific population genetic structure analyse
Data from: Genomic signatures of sympatric speciation with historical and contemporary gene flow in a tropical anthozoan (Hexacorallia: Actiniaria)
Sympatric diversification is increasingly thought to have played an important role in the evolution of biodiversity around the globe. However, an in situ sympatric origin for co-distributed taxa is difficult to demonstrate empirically because different evolutionary processes can lead to similar biogeographic outcomes- especially in ecosystems that can readily facilitate secondary contact due to a lack of hard barriers to dispersal. Here we use a genomic (ddRADseq), model-based approach to delimit a species complex of tropical sea anemones that are co-distributed on coral reefs throughout the Tropical Western Atlantic. We use coalescent simulations in fastsimcoal2 to test competing diversification scenarios that span the allopatric-sympatric continuum. We recover support that the corkscrew sea anemone Bartholomea annulata (Le Sueur, 1817) is a cryptic species complex, co-distributed throughout its range. Simulation and model selection analyses suggest these lineages arose in the face of historical and contemporary gene flow, supporting a sympatric origin, but an alternative secondary contact model also receives appreciable model support. Leveraging the genome of Exaiptasia diaphana we identify five loci under divergent selection between cryptic B. annulata lineages that fall within mRNA transcripts or CDS regions. Our study provides a rare empirical, genomic example of sympatric speciation in a tropical anthozoan. Finally, these data represent the first range-wide molecular study of any tropical sea anemone, underscoring that anemone diversity is under described in the tropics, and highlighting the need for additional systematic studies into these ecologically and economically important species
Bannulata_spdelim_FINAL_interspecific_Arlequin
Arlequin input file of interspecific ddRADseq data generated for Bartholomea annulata for species-level analyse
FastsimcoalMoments_small_dataset
All data files (allele frequency spectrums and models) for fastsimcoal2 simulation analyses for the reduced Bartholomea annulata dataset (~40 individuals
Bannulata_spdelim_FINAL_intraspecific_structure
Structure input file for Bartholomea annulata ddRADseq data for intraspecific genetic clustering analyse
Data from: Primers for Castilleja and their utility across Orobanchaceae: II. Single-copy nuclear loci
Premise of the study: We developed primers targeting nuclear loci in Castilleja with the goal of reconstructing the evolutionary history of this challenging clade. These primers were tested across other major clades in Orobanchaceae to assess their broader utility.
Methods and Results: We assembled low-coverage genomes for three taxa in Castilleja and developed primer combinations for the single-copy conserved ortholog set (COSII) and the pentatricopeptide repeat (PPR) gene family. These primer combinations were designed to take advantage of the Fluidigm microfluidic PCR platform and are well suited for high-throughput sequencing applications. Eighty-seven primers were designed for Castilleja, and 27 were found to have broader utility in Orobanchaceae.
Conclusions: These results demonstrate the utility of these primers, not only across Castilleja, but for other lineages within Orobanchaceae as well. This expanded molecular toolkit will be an asset to future phylogenetic studies in Castilleja and throughout Orobanchaceae
Ccus.ppr.hits
Identified PPR hits for Castilleja cusickii in fasta format
- …