2,099 research outputs found
Measurement of the branching fraction and CP content for the decay B(0) -> D(*+)D(*-)
This is the pre-print version of the Article. The official published version can be accessed from the links below. Copyright @ 2002 APS.We report a measurement of the branching fraction of the decay B0→D*+D*- and of the CP-odd component of its final state using the BABAR detector. With data corresponding to an integrated luminosity of 20.4 fb-1 collected at the Υ(4S) resonance during 1999–2000, we have reconstructed 38 candidate signal events in the mode B0→D*+D*- with an estimated background of 6.2±0.5 events. From these events, we determine the branching fraction to be B(B0→D*+D*-)=[8.3±1.6(stat)±1.2(syst)]×10-4. The measured CP-odd fraction of the final state is 0.22±0.18(stat)±0.03(syst).This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF (Germany), INFN (Italy), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from the A.P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation
A search for the decay modes B+/- to h+/- tau l
We present a search for the lepton flavor violating decay modes B+/- to h+/-
tau l (h= K,pi; l= e,mu) using the BaBar data sample, which corresponds to 472
million BBbar pairs. The search uses events where one B meson is fully
reconstructed in one of several hadronic final states. Using the momenta of the
reconstructed B, h, and l candidates, we are able to fully determine the tau
four-momentum. The resulting tau candidate mass is our main discriminant
against combinatorial background. We see no evidence for B+/- to h+/- tau l
decays and set a 90% confidence level upper limit on each branching fraction at
the level of a few times 10^-5.Comment: 15 pages, 7 figures, submitted to Phys. Rev.
Search for rare quark-annihilation decays, B --> Ds(*) Phi
We report on searches for B- --> Ds- Phi and B- --> Ds*- Phi. In the context
of the Standard Model, these decays are expected to be highly suppressed since
they proceed through annihilation of the b and u-bar quarks in the B- meson.
Our results are based on 234 million Upsilon(4S) --> B Bbar decays collected
with the BABAR detector at SLAC. We find no evidence for these decays, and we
set Bayesian 90% confidence level upper limits on the branching fractions BF(B-
--> Ds- Phi) Ds*- Phi)<1.2x10^(-5). These results
are consistent with Standard Model expectations.Comment: 8 pages, 3 postscript figues, submitted to Phys. Rev. D (Rapid
Communications
Evidence for an excess of B -> D(*) Tau Nu decays
Based on the full BaBar data sample, we report improved measurements of the
ratios R(D(*)) = B(B -> D(*) Tau Nu)/B(B -> D(*) l Nu), where l is either e or
mu. These ratios are sensitive to new physics contributions in the form of a
charged Higgs boson. We measure R(D) = 0.440 +- 0.058 +- 0.042 and R(D*) =
0.332 +- 0.024 +- 0.018, which exceed the Standard Model expectations by 2.0
sigma and 2.7 sigma, respectively. Taken together, our results disagree with
these expectations at the 3.4 sigma level. This excess cannot be explained by a
charged Higgs boson in the type II two-Higgs-doublet model. We also report the
observation of the decay B -> D Tau Nu, with a significance of 6.8 sigma.Comment: Expanded section on systematics, text corrections, improved the
format of Figure 2 and included the effect of the change of the Tau
polarization due to the charged Higg
Measurement of D-s(+) and D-s(*+) production in B meson decays and from continuum e(+)e(-) annihilation at √s=10.6 GeV
This is the pre-print version of the Article. The official published version can be accessed from the links below. Copyright @ 2002 APSNew measurements of Ds+ and Ds*+ meson production rates from B decays and from qq̅ continuum events near the Υ(4S) resonance are presented. Using 20.8 fb-1 of data on the Υ(4S) resonance and 2.6 fb-1 off-resonance, we find the inclusive branching fractions B(B⃗Ds+X)=(10.93±0.19±0.58±2.73)% and B(B⃗Ds*+X)=(7.9±0.8±0.7±2.0)%, where the first error is statistical, the second is systematic, and the third is due to the Ds+→φπ+ branching fraction uncertainty. The production cross sections σ(e+e-→Ds+X)×B(Ds+→φπ+)=7.55±0.20±0.34pb and σ(e+e-→Ds*±X)×B(Ds+→φπ+)=5.8±0.7±0.5pb are measured at center-of-mass energies about 40 MeV below the Υ(4S) mass. The branching fractions ΣB(B⃗Ds(*)+D(*))=(5.07±0.14±0.30±1.27)% and ΣB(B⃗Ds*+D(*))=(4.1±0.2±0.4±1.0)% are determined from the Ds(*)+ momentum spectra. The mass difference m(Ds+)-m(D+)=98.4±0.1±0.3MeV/c2 is also measured.This work was supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF (Germany), INFN (Italy), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from the Swiss NSF, A. P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation
Search for the decay modes D^0 → e^+e^-, D^0 → μ^+μ^-, and D^0 → e^±μ∓
We present searches for the rare decay modes D^0→e^+e^-, D^0→μ^+μ^-, and D^0→e^±μ^∓ in continuum e^+e^-→cc events recorded by the BABAR detector in a data sample that corresponds to an integrated luminosity of 468 fb^(-1). These decays are highly Glashow–Iliopoulos–Maiani suppressed but may be enhanced in several extensions of the standard model. Our observed event yields are consistent with the expected backgrounds. An excess is seen in the D^0→μ^+μ^- channel, although the observed yield is consistent with an upward background fluctuation at the 5% level. Using the Feldman–Cousins method, we set the following 90% confidence level intervals on the branching fractions: B(D^0→e^+e^-)<1.7×10^(-7), B(D^0→μ^+μ^-) within [0.6,8.1]×10^(-7), and B(D^0→e^±μ^∓)<3.3×10^(-7)
Study of the reaction e^{+}e^{-} -->J/psi\pi^{+}\pi^{-} via initial-state radiation at BaBar
We study the process with
initial-state-radiation events produced at the PEP-II asymmetric-energy
collider. The data were recorded with the BaBar detector at center-of-mass
energies 10.58 and 10.54 GeV, and correspond to an integrated luminosity of 454
. We investigate the mass
distribution in the region from 3.5 to 5.5 . Below 3.7
the signal dominates, and above 4
there is a significant peak due to the Y(4260). A fit to
the data in the range 3.74 -- 5.50 yields a mass value
(stat) (syst) and a width value (stat)(syst) for this state. We do not
confirm the report from the Belle collaboration of a broad structure at 4.01
. In addition, we investigate the system
which results from Y(4260) decay
Observation and study of baryonic B decays: B -> D(*) p pbar, D(*) p pbar pi, and D(*) p pbar pi pi
We present a study of ten B-meson decays to a D(*), a proton-antiproton pair,
and a system of up to two pions using BaBar's data set of 455x10^6 BBbar pairs.
Four of the modes (B0bar -> D0 p anti-p, B0bar -> D*0 p anti-p, B0bar -> D+ p
anti-p pi-, B0bar -> D*+ p anti-p pi-) are studied with improved statistics
compared to previous measurements; six of the modes (B- -> D0 p anti-p pi-, B-
-> D*0 p anti-p pi-, B0bar -> D0 p anti-p pi- pi+, B0bar -> D*0 p anti-p pi-
pi+, B- -> D+ p anti-p pi- pi-, B- -> D*+ p anti-p pi- pi-) are first
observations. The branching fractions for 3- and 5-body decays are suppressed
compared to 4-body decays. Kinematic distributions for 3-body decays show
non-overlapping threshold enhancements in m(p anti-p) and m(D(*)0 p) in the
Dalitz plots. For 4-body decays, m(p pi-) mass projections show a narrow peak
with mass and full width of (1497.4 +- 3.0 +- 0.9) MeV/c2, and (47 +- 12 +- 4)
MeV/c2, respectively, where the first (second) errors are statistical
(systematic). For 5-body decays, mass projections are similar to phase space
expectations. All results are preliminary.Comment: 28 pages, 90 postscript figures, submitted to LP0
- …