18 research outputs found

    Detecting nitrogen-vacancy-hydrogen centers on the nanoscale using nitrogen-vacancy centers in diamond

    Full text link
    In diamond, nitrogen defects like the substitutional nitrogen defect (Ns) or the nitrogen-vacancy-hydrogen complex (NVH) outnumber the nitrogen vacancy (NV) defect by at least one order of magnitude creating a dense spin bath. While neutral Ns has an impact on the coherence of the NV spin state, the atomic structure of NVH reminds of a NV center decorated with a hydrogen atom. As a consequence, the formation of NVH centers could compete with that of NV centers possibly lowering the N-to-NV conversion efficiency in diamond grown with hydrogen-plasma-assisted chemical vapor deposition (CVD). Therefore, monitoring and controlling the spin bath is essential to produce and understand engineered diamond material with high NV concentrations for quantum applications. While the incorporation of Ns in diamond has been investigated on the nano- and mesoscale for years, studies concerning the influence of CVD parameters and the crystal orientation on the NVH formation have been restricted to bulk N-doped diamond providing high-enough spin numbers for electron paramagnetic resonance and optical absorption spectroscopy techniques. Here, we investigate sub-micron-thick (100)-diamond layers with nitrogen contents of (13.8 +- 1.6) ppm and (16.7 +- 3.6) ppm, and exploiting the NV centers in the layers as local nano-sensors, we demonstrate the detection of NVH- centers using double-electron-electron-resonance (DEER). To determine the NVH- densities, we quantitatively fit the hyperfine structure of NVH- and confirm the results with the DEER method usually used for determining Ns0 densities. With our experiments, we access the spin bath composition on the nanoscale and enable a fast feedback-loop in CVD recipe optimization with thin diamond layers instead of resource- and time-intensive bulk crystals.Comment: 7 pages, 3 figure

    Nuclear magnetic resonance study of the magnetic-field-induced ordered phase in the NiCl2-4SC(NH2)2 compound

    Get PDF
    Nuclear magnetic resonance (NMR) study of the high magnetic field (H) part of the Bose-Einstein condensed (BEC) phase of the quasi-onedimensional (quasi-1D) antiferromagnetic quantum spin-chain compound NiCl2-4SC(NH2)2 (DTN) was performed. We precisely determined the phase boundary, Tc(H), down to 40 mK; the critical boson density, n_c(Tc); and the absolute value of the BEC order parameter S_perp at very low temperature (T = 0.12 K). All results are accurately reproduced by numerical quantum Monte Carlo simulations of a realistic three-dimensional (3D) model Hamiltonian. Approximate analytical predictions based on the 1D Tomonaga-Luttinger liquid description are found to be precise for Tc(H), but less so for S_perp(H), which is more sensitive to the strength of 3D couplings, in particular close to the critical field. A mean-field treatment, based on the Hartree-Fock-Popov description, is found to be valid only up to n_c = 4% (T < 0.3 K), while for higher n_c boson interactions appear to modify the density of states.Comment: Manuscript (6 pages, 3 figures) and the corresponding Supplemental material (5 pages, 6 figures), altogether 11 pages and 9 figure

    Nuclear Magnetic Resonance study of new magnetic-field-induced quantum states : Bose-Einstein Condensation in the DTN compound

    No full text
    Nous prĂ©sentons l'Ă©tude par RĂ©sonance MagnĂ©tique NuclĂ©aire (RMN) du composĂ© NiCl2-4SC(NH2)2, dit DTN, constituĂ© de chaĂźnes de spins 1 faiblement couplĂ©es suivant les directions transverses aux chaĂźnes. A basse tempĂ©rature et dans un champ magnĂ©tique compris entre les deux valeurs critiques Hc1 et Hc2, ce systĂšme s'ordonne dans un Ă©tat de type Condensat de Bose-Einstein (CBE). Dans cette phase, nous dĂ©crivons d'une part la dĂ©termination expĂ©rimentale du paramĂštre d'ordre (aimantation transverse), dont l'amplitude est bien dĂ©crite par la thĂ©orie mais dont la phase (orientation) semble fixĂ©e par un terme d'anisotropie. D'autre part nous avons Ă©tudiĂ© les fluctuations des spins Ă©lectroniques Ă  basse Ă©nergie, par la mesure du taux de relaxation RMN 1/T1, et montrĂ© que celui-ci obĂ©it Ă  la loi de puissance 1/T1 propto T^5. Ce comportement peut ĂȘtre associĂ© au processus de 2Ăšme ordre liĂ© Ă  des excitations ayant une dispersion linĂ©aire, tels que les quasiparticules de Bogoliubov, mais sa nature n'est pas encore bien comprise. En dehors de la phase CBE, nous dĂ©crivons l'Ă©tude des fluctuations de spin dans le rĂ©gime critique quantique (H ~ Hc2), dans lequel nous Ă©tablissons une loi d'Ă©chelle sur 1/T1, identique Ă  celle que l'on a observĂ© dans un autre composĂ© de description Ă©quivalente (Ă©chelle de spins BPCB), prouvant ainsi l'universalitĂ© de ce rĂ©gime [S. Mukhopadhyay et al., Phys. Rev. Lett. 109, 177206 (2012)]. Nous avons aussi Ă©tudiĂ© les effets du dĂ©sordre induit par la substitution Br-Cl dans le composĂ© Ni(Cl1−xBrx)2-4SC(NH2)2, pour lequel des mesures par des techniques macroscopiques ont suggĂ©rĂ© l'existence d'une phase "verre de Bose" [R. Yu et al., Nature 489, 379 (2012)]. Cette phase est caractĂ©risĂ©e, pour diffĂ©rentes concentrations du dopage x = 4%, 9%, 13%, par un pic de relaxation RMN 1/T1 au champ Hp = 13.5 T, marquant un regain des fluctuations longitudinales et prĂ©sentant une forte distribution des valeurs de 1/T1 - probablement due Ă  l'aspect vitreux du systĂšme. L'indĂ©pendance du Hp en fonction de x dĂ©montre que la physique y est dominĂ©e par les effets locaux liĂ©s aux dopants.We present a Nuclear Magnetic Resonance (NMR) study of the NiCl2-4SC(NH2)2 compound, called DTN, consisting of spin-1 chains that are weakly coupled along the transverse directions. At low temperatures and for magnetic field values between the two critical fields Hc1 and Hc2, this system enters an ordered phase of the Bose-Einstein Condensate (BEC) type. Within this phase, we first describe the experimental determination of the order parameter (transverse magnetization), the amplitude of which is found to be well described by theory while its phase (orientation) seems to be fixed by an anisotropy term. Second, by NMR relaxation rate 1/T1 we have studied the low-energy fluctuations of the electronic spins and found that they obey the power law 1/T1 ~ T 5. Such a behaviour points to a 2nd order process involving linearly dispersing excitations, such as Bogoliubov quasiparticles, but its nature is not yet well understood. Outside the BEC phase, we report a study of the spin fluctuations in the quantum critical regime (H ~ Hc2), demonstrating a scaling law on 1/T1 similar to the one that has already been observed in another equivalent compound, BPCB spin-ladder, thus proving the universality of this regime [S. Mukhopadhyay et al., Phys. Rev. Lett. 109, 177206 (2012)]. We have also studied the effect of disorder induced by the Br-Cl substitution in the compound Ni(Cl1-xBrx)2-4SC(NH2)2 (doped DTN), for which measurements using macroscopic techniques have suggested the existence of a "Bose glass" phase [R. Yu et al., Nature 489, 379 (2012)]. This phase is characterized, for all studied doping concentrations x = 4%, 9%, 13%, by a peak in the NMR relaxation rate 1/T1 at the field value Hp ~ 13.5 T, evidencing an upsurge of the longitudinal spin fluctuations, and presenting strong inhomogeneity of the 1/T1 values – probably reflecting the glassy character of the system. The observed doping-independence of Hp demonstrates that the corresponding physics is dominated by local effects due to the dopants

    Étude par RĂ©sonance MagnĂ©tique NuclĂ©aire de nouveaux Ă©tats quantiques induits sous champ magnĂ©tique : condensation de Bose-Einstein dans le composĂ© DTN

    No full text
    We present a Nuclear Magnetic Resonance (NMR) study of the NiCl2-4SC(NH2)2 compound, called DTN, consisting of spin-1 chains that are weakly coupled along the transverse directions. At low temperatures and for magnetic field values between the two critical fields Hc1 and Hc2, this system enters an ordered phase of the Bose-Einstein Condensate (BEC) type. Within this phase, we first describe the experimental determination of the order parameter (transverse magnetization), the amplitude of which is found to be well described by theory while its phase (orientation) seems to be fixed by an anisotropy term. Second, by NMR relaxation rate 1/T1 we have studied the low-energy fluctuations of the electronic spins and found that they obey the power law 1/T1 ~ T 5. Such a behaviour points to a 2nd order process involving linearly dispersing excitations, such as Bogoliubov quasiparticles, but its nature is not yet well understood. Outside the BEC phase, we report a study of the spin fluctuations in the quantum critical regime (H ~ Hc2), demonstrating a scaling law on 1/T1 similar to the one that has already been observed in another equivalent compound, BPCB spin-ladder, thus proving the universality of this regime [S. Mukhopadhyay et al., Phys. Rev. Lett. 109, 177206 (2012)]. We have also studied the effect of disorder induced by the Br-Cl substitution in the compound Ni(Cl1-xBrx)2-4SC(NH2)2 (doped DTN), for which measurements using macroscopic techniques have suggested the existence of a "Bose glass" phase [R. Yu et al., Nature 489, 379 (2012)]. This phase is characterized, for all studied doping concentrations x = 4%, 9%, 13%, by a peak in the NMR relaxation rate 1/T1 at the field value Hp ~ 13.5 T, evidencing an upsurge of the longitudinal spin fluctuations, and presenting strong inhomogeneity of the 1/T1 values – probably reflecting the glassy character of the system. The observed doping-independence of Hp demonstrates that the corresponding physics is dominated by local effects due to the dopants.Nous prĂ©sentons l'Ă©tude par RĂ©sonance MagnĂ©tique NuclĂ©aire (RMN) du composĂ© NiCl2-4SC(NH2)2, dit DTN, constituĂ© de chaĂźnes de spins 1 faiblement couplĂ©es suivant les directions transverses aux chaĂźnes. A basse tempĂ©rature et dans un champ magnĂ©tique compris entre les deux valeurs critiques Hc1 et Hc2, ce systĂšme s'ordonne dans un Ă©tat de type Condensat de Bose-Einstein (CBE). Dans cette phase, nous dĂ©crivons d'une part la dĂ©termination expĂ©rimentale du paramĂštre d'ordre (aimantation transverse), dont l'amplitude est bien dĂ©crite par la thĂ©orie mais dont la phase (orientation) semble fixĂ©e par un terme d'anisotropie. D'autre part nous avons Ă©tudiĂ© les fluctuations des spins Ă©lectroniques Ă  basse Ă©nergie, par la mesure du taux de relaxation RMN 1/T1, et montrĂ© que celui-ci obĂ©it Ă  la loi de puissance 1/T1 propto T^5. Ce comportement peut ĂȘtre associĂ© au processus de 2Ăšme ordre liĂ© Ă  des excitations ayant une dispersion linĂ©aire, tels que les quasiparticules de Bogoliubov, mais sa nature n'est pas encore bien comprise. En dehors de la phase CBE, nous dĂ©crivons l'Ă©tude des fluctuations de spin dans le rĂ©gime critique quantique (H ~ Hc2), dans lequel nous Ă©tablissons une loi d'Ă©chelle sur 1/T1, identique Ă  celle que l'on a observĂ© dans un autre composĂ© de description Ă©quivalente (Ă©chelle de spins BPCB), prouvant ainsi l'universalitĂ© de ce rĂ©gime [S. Mukhopadhyay et al., Phys. Rev. Lett. 109, 177206 (2012)]. Nous avons aussi Ă©tudiĂ© les effets du dĂ©sordre induit par la substitution Br-Cl dans le composĂ© Ni(Cl1−xBrx)2-4SC(NH2)2, pour lequel des mesures par des techniques macroscopiques ont suggĂ©rĂ© l'existence d'une phase "verre de Bose" [R. Yu et al., Nature 489, 379 (2012)]. Cette phase est caractĂ©risĂ©e, pour diffĂ©rentes concentrations du dopage x = 4%, 9%, 13%, par un pic de relaxation RMN 1/T1 au champ Hp = 13.5 T, marquant un regain des fluctuations longitudinales et prĂ©sentant une forte distribution des valeurs de 1/T1 - probablement due Ă  l'aspect vitreux du systĂšme. L'indĂ©pendance du Hp en fonction de x dĂ©montre que la physique y est dominĂ©e par les effets locaux liĂ©s aux dopants

    Mixed-Halide Triphenyl Methyl Radicals for Site-Selective Functionalization and Polymerization

    No full text
    Derivatives of the stable, luminescent tris-2,4,6-trichlorophenylmethyl (TTM) radical exhibit unique doublet spin properties that are of interest for applications in optoelectronics, spintronics, and energy storage. However, poor reactivity of the chlo-ride-moieties limits the yield of functionalization and thus the accessible variety of high performance luminescent radicals. Here, we present a pathway to obtain mixed-bromide and chloride derivatives of TTM by simple Friedel-Crafts alkylation. The re-sulting radical compounds show higher stability and site-specific reactivity in cross-coupling reactions, due to the better leaving group character of the para-bromide. The mixed halide radicals give access to complex, and so far inaccessible luminescent open-shell small molecules, as well as polymers carrying the radical centers in their backbone. The new mixed-halide triphenyl methyl radicals represent a powerful building block for customized design and synthesis of stable luminescent radicals
    corecore