1,936 research outputs found

    One School: Using Teach-Throughs to Ensure Consistency

    Get PDF
    Presented as a Poster Presentation at 2020 IUSM Education Day

    Association of Factor V Secretion with Protein Kinase B Signaling in Platelets from Horses with Atypical Equine Thrombasthenia.

    Get PDF
    BackgroundTwo congenital bleeding diatheses have been identified in Thoroughbred horses: Glanzmann thrombasthenia (GT) and a second, novel diathesis associated with abnormal platelet function in response to collagen and thrombin stimulation.Hypothesis/objectivesPlatelet dysfunction in horses with this second thrombasthenia results from a secretory defect.AnimalsTwo affected and 6 clinically normal horses.MethodsEx vivo study. Washed platelets were examined for (1) expression of the αIIb-β3 integrin; (2) fibrinogen binding capacity in response to ADP and thrombin; (3) secretion of dense and α-granules; (4) activation of the mammalian target of rapamycin (mTOR)-protein kinase B (AKT) signaling pathway; and (5) cellular distribution of phosphatidylinositol-4-phosphate-3-kinase, class 2B (PIK3C2B) and SH2 containing inositol-5'-phosphatase 1 (SHIP1).ResultsPlatelets from affected horses expressed normal amounts of αIIb-β3 integrin and bound fibrinogen normally in response to ADP, but bound 80% less fibrinogen in response to thrombin. α-granules only released 50% as much Factor V as control platelets, but dense granules released their contents normally. Protein kinase B (AKT) phosphorylation was reduced after thrombin activation, but mTOR Complex 2 (mTORC2) and phosphoinositide-dependent kinase 1 (PDK1) signaling were normal. SH2-containing inositol-5'-phosphatase 1 (SHIP1) did not localize to the cytoskeleton of affected platelets and was decreased overall consistent with reduced AKT phosphorylation.Conclusions and clinical significanceDefects in fibrinogen binding, granule secretion, and signal transduction are unique to this thrombasthenia, which we designate as atypical equine thrombasthenia

    Nutrient Chemistry of a Reconstructed Forested Wetland in Rowan County, Kentucky

    Get PDF
    A thesis presented to the faculty of the Department of Biological and Environmental Sciences at Morehead State University in partial fulfillment of the requirements for the Degree of Master of Science in Biology by David M. Blevins on May 10, 1991

    Rat Pancreatic Nucleoside Diphosphate Kinase, a Novel Regulator of Cholecystokinin Receptor Affinity

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72322/1/j.1749-6632.1994.tb44089.x.pd

    Ethylene production, cluster root formation, and localization of iron(III) reducing capacity in Fe deficient squash roots

    Get PDF
    Dicots and non-graminaceous monocots have the ability to increase root iron(III) reducing capacity in response to iron (Fe) deficiency stress. In squash (Cucurbita pepo L.) seedlings, Fe(III) reducing capacity was quantified during early vegetative growth. When plants were grown in Fe-free solution, the Fe(III) reducing capacity was greatly elevated, reached peak activity on day 4, then declined through day 6. Root ethylene production exhibited a temporal pattern that closely matched that of Fe(III) reducing capacity through day 6. On the 7th day of Fe deficiency, cluster root morphology developed, which coincided with a sharp increase in the root Fe(III) reducing capacity, although ethylene production decreased. Localization of Fe(III) reducing capacity activity was observed during the onset of Fe deficiency and through the development of the root clusters. It was noted that localization shifted from an initial pattern which occurred along the main and primary lateral root axes, excluding the apex, to a final localization pattern in which the reductase appeared only on secondary laterals and cluster rootlets

    Increased systemic inflammation is associated with cardiac and vascular dysfunction over the first 12 weeks of antiretroviral therapy among undernourished, HIV-infected adults in Southern Africa.

    Get PDF
    This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.INTRODUCTION: Persistent systemic inflammation is associated with mortality among undernourished, HIV-infected adults starting antiretroviral therapy (ART) in sub-Saharan Africa, but the etiology of these deaths is not well understood. We hypothesized that greater systemic inflammation is accompanied by cardiovascular dysfunction over the first 12 weeks of ART. METHODS: In a prospective cohort of 33 undernourished (body mass index <18.5 kg/m2) Zambian adults starting ART, we measured C-reactive protein (CRP), tumor necrosis factor-α receptor 1 (TNF-α R1), and soluble CD163 and CD14 at baseline and 12 weeks. An EndoPAT device measured the reactive hyperemia index (LnRHI; a measure of endothelial responsiveness), peripheral augmentation index (AI; a measure of arterial stiffness), and heart rate variability (HRV; a general marker of autonomic tone and cardiovascular health) at the same time points. We assessed paired changes in inflammation and cardiovascular parameters, and relationships independent of time point (adjusted for age, sex, and CD4+ T-cell count) using linear mixed models. RESULTS: Serum CRP decreased (median change -3.5 mg/l, p=0.02), as did TNF-α R1 (-0.31 ng/ml, p<0.01), over the first 12 weeks of ART. A reduction in TNF-α R1 over 12 weeks was associated with an increase in LnRHI (p=0.03), and a similar inverse relationship was observed for CRP and LnRHI (p=0.07). AI increased in the cohort as a whole over 12 weeks, and a reduction in sCD163 was associated with a rise in the AI score (p=0.04). In the pooled analysis of baseline and 12 week data, high CRP was associated with lower HRV parameters (RMSSD, p=0.01; triangular index, p<0.01), and higher TNF- α R1 accompanied lower HRV (RMSSD, p=0.07; triangular index, p=0.06). CONCLUSIONS: Persistent inflammation was associated with impaired cardiovascular health over the first 12 weeks of HIV treatment among undernourished adults in Africa, suggesting cardiac events may contribute to high mortality in this population.This work was supported by the Vanderbilt Meharry Center for AIDS Research (NIH grant number P30 AI54999); the NIH Fogarty International Center, Office of the Director, National Institutes of Health, National Heart, Blood, and Lung Institute, and National Institute of Mental Health, through the Vanderbilt-Emory-Cornell-Duke Consortium for Global Health Fellows (grant number R25 TW009337); the National Center for Advancing Translational Sciences (CTSA award number UL1TR000445) and the European and Developing Countries Clinical Trials Partnership (grant IP.2009.33011.004)

    Observations on the vibration of axially-tensioned elastomeric pipes conveying fluids

    Get PDF
    A study of the effect of axial tension on the vibration of a single-span elastomeric pipe clamped at both ends conveying fluid has been carried out both experimentally and theoretically. A new mathematical model using a penalty function technique and the method of kinematic correction and fictitious loads has been developed. The influence of flowing fluid and axial tension on natural frequencies and mode shapes of the system has been described using this model and compared with experimental observations. Linear and non-linear dynamic response of the harmonically excited pipe has also been investigated for varying flow velocities and initial axial tensions

    Aerodynamic Characterization of a Modern Launch Vehicle

    Get PDF
    A modern launch vehicle is by necessity an extremely integrated design. The accurate characterization of its aerodynamic characteristics is essential to determine design loads, to design flight control laws, and to establish performance. The NASA Ares Aerodynamics Panel has been responsible for technical planning, execution, and vetting of the aerodynamic characterization of the Ares I vehicle. An aerodynamics team supporting the Panel consists of wind tunnel engineers, computational engineers, database engineers, and other analysts that address topics such as uncertainty quantification. The team resides at three NASA centers: Langley Research Center, Marshall Space Flight Center, and Ames Research Center. The Panel has developed strategies to synergistically combine both the wind tunnel efforts and the computational efforts with the goal of validating the computations. Selected examples highlight key flow physics and, where possible, the fidelity of the comparisons between wind tunnel results and the computations. Lessons learned summarize what has been gleaned during the project and can be useful for other vehicle development projects
    corecore