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Observations on the vibration of axially tensioned
elastomeric pipes conveying ¯uid

Y L Zhang1, D G Gorman1, J M Reese1* and J Horacek2
1Department of Engineering, University of Aberdeen, Aberdeen, Scotland, UK
2Institute of Thermomechanics of the Academy of Sciences of the Czech Republic, Prague, Czech Republic

Abstract: A study of the e�ect of axial tension on the vibration of a single-span elastomeric pipe
clamped at both ends conveying ¯uid has been carried out both experimentally and theoretically. A
new mathematical model using a penalty function technique and the method of kinematic correction
and ®ctitious loads has been developed. The in¯uence of ¯owing ¯uid and axial tension on natural
frequencies and mode shapes of the system has been described using this model and compared with
experimental observations. Linear and non-linear dynamic response of the harmonically excited pipe
has also been investigated for varying ¯ow velocities and initial axial tensions.

Keywords: pipe conveying ¯uid, vibration, ®nite element method

NOTATION

Af, Ap cross-sectional area of the ¯uid and pipe
respectively

ci, Ci ith elemental and assembly ¯uid ¯owing
damping matrices respectively

De, Di external and internal diameters respectively
D symmetric stress±strain matrix
e, e0 strain and initial strain tensor ®elds of the

pipe respectively
E, EI, I Young's modulus, ¯exural rigidity and area

moment of inertia respectively
fi, Fi ith elemental force vectors in the local and

global coordinate systems respectively
f ldi elemental ®ctitious load vector
G shear modulus
hi shape functions for the pipe domain,

i � 1, 2, . . . ,10
H matrix of the shape function for the ¯uid

domain
ki, Ki ith elemental sti�ness matrices in the local

and global coordinate systems respectively
K shear coe�cient of the pipe material
l, L pipe elemental length and pipe length

respectively
mf, mp ¯uid and pipe masses per unit length

respectively

mi, Mi ith elemental mass matrices in the local and
global coordinate systems respectively

mf, mp ¯uid and pipe inertia force±acceleration
matrices respectively

n unit outward vector normal to the pipe
surface

N matrix of shape function for the pipe
domain

p ¯uid pressure within the pipe
�pf, �pp vectors of the prescribed ¯uid and pipe

boundary traction respectively
r, _r, �r vector ®eld of nodal displacements
t unit vector tangential to the pipe surface
T0 initial axial tension of the pipe
Ti coordinate transformation matrix of the ith

element, i � 1, 2, . . . ,m
u, ', w displacements in the x, ' and y directions in

Cartesian coordinates respectively
up, _up, �up vector ®elds of the pipe displacement

velocity and acceleration respectively
uf, ur vector ®elds of the ¯uid absolute and

relative displacements respectively
U, V ¯uid scalar velocity and velocity vector ®eld

respectively
x coordinate along the longitudinal direction

of the pipe element
�Xf, �Xp vectors of the ¯uid and pipe body forces

respectively
wam, yam peak displacement amplitude and seismic

displacement amplitude respectively

ÿf, ÿp ¯uid and pipe boundary conditions
respectively, ÿ � ÿp

S
ÿf
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� � x=l
�f, �p densities of ¯uid and pipe respectively
'i, 'i�1 cross-sectional rotation of ith and �i� 1�th

nodes of the ith element respectively

,! excitation frequency and natural frequency

respectively

f, 
p ¯uid and pipe domains respectively

Subscripts

f ¯uid quantities
n nth vibration mode
p pipe quantities

Superscript

T transpose of matrix

1 INTRODUCTION

The vibration of elastomeric pipes under axial tension
conveying ¯uid is a topic of considerable interest in civil,
mechanical and bioengineering. A review of the
dynamics of pipes conveying ¯uid was conducted by
PaõÈ doussis and Li [1] and Blevins [2]. It has been shown
theoretically, and con®rmed experimentally, that the
natural frequencies of axially tensioned tubes conveying
¯uid decrease when the ¯ow velocity increases or the
initial axial tension decreases [3]. However, there have
been fewer investigations reported on the e�ect of axial
tension and ¯ow velocity on modal shapes and phase
variation along the span. Naguleswarn and Williams [4]
investigated experimentally the e�ect of ¯ow velocity
and axial tension on the fundamental natural frequency
and its phase variation, and con®rmed their analytical
predictions using the two-term Galerkin method. Chen
and Roseberg [5] theoretically accounted for the phe-
nomena of phase propagation upstream due to the e�ect
of the Coriolis force; however, no experimental con-
®rmation was presented. Jendrzejczyk and Chen [6]
stated brie¯y, without experimental veri®cation, that the
Coriolis force causes phase distortion but does not
contribute to damping since the system is conservative.
These researchers also observed that the modal damping
ratio increased slightly with increasing ¯ow velocity for
an acrylic tube, clamped at both ends, conveying water.
However, these investigations were con®ned to the lin-
ear regime and were used to predict natural frequencies
up to 60 per cent of the critical ¯ow velocity at which the
system loses stability by bifurcation [3].

On the other hand, for many dynamic problems, such
as blood vessels in ®ngers, above-ground pipelines sub-
jected to wind gusts, and spanning subsea pipelines
excited by cross-¯ow current, the e�ect of non-linearity
is too important to ignore [7]. Thurman and Mote [8, 9]

conducted a non-linear study on the vibration of pipes
conveying ¯uid; equations of motion in both the lateral
and the longitudinal directions were developed and
explicitly analysed via a hybrid method. Non-linear
analyses of pipes conveying ¯uid have been performed
by Rouselet and Herrmann [10], and Edelstein et al. [11],
but these theoretical studies were con®ned to non-con-
servative systems and were performed to evaluate the
applicable range of the linear theory and response in the
post-critical ¯ow velocity range.

The present paper describes the vibratory character-
istics of a single-span liquid-®lled or empty pipe under
various initial axial tensions undergoing one-dimen-
sional harmonic seismic excitation. Mode coupling,
node shift and frequencies within both the linear and the
non-linear response regimes due to non-linear geome-
trical e�ects are investigated.

In general, when the pipe vibrates laterally and
longitudinally, the ¯uid ¯ow within the pipe is a�ected;
conversely, the ¯uid interacts with the walls of the pipe
and alters the vibratory characteristics of the system. In
this study the ¯uid was considered to be incompressible
and inviscid with a constant and uniform velocity pro-
®le. The pipe had a constant circular cross-sectional
area. Numerical simulations were performed for com-
parison with experimental data.

2 MODEL FORMULATION

Consider steady ¯uid ¯ow within an elastomeric pipe
clamped at both ends, as shown in Fig. 1. Let the
coordinate x be in the pipe centre-line at equilibrium
and y normal to it. The seismic displacement y0 will be
identical at any point within the whole system.

It is assumed that the pipe material is linear, homo-
geneous and isotropic and that the motion of the pipe is
planar. The strain energy is combined with the kinetic
energy for the pipe domain 
p to form the Lagrangian
function as follows [12]:

�pipe � 1
2

�

p

�e� e0�TD�e� e0� d
p

ÿ
�


p

uTp
�Xp d
p ÿ

�
ÿp

uTp �pp dÿp �1�

The strain ®eld, with the assumption that the deformed
curvature can be approximated by the second derivative
of the ¯exural displacement, may be expressed as [13]:

e �eL � eNL

� @u

@x
,
@'

@x
,'� @w
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Applying the Hamilton principle [12] to equation (1), the
following equation can be obtained:�


p

BTD�Br� e0� d
p � T0

�

p

N 0Tw N 0wr d
p

�
�


p

BTDBNL � BT
NLDB � BT

NLDBNL

ÿ �
r d
p

ÿ
�


p

NT �Xp d
p ÿ
�

ÿp

NT�pp dÿp � 0 �3�

where a prime denotes the ®rst-order derivative with
respect to x.

The equation describing the ¯uid motion in 
f is

mf
DV

Dt
� /pAf � �Xf �4�

together with the incompressibility condition

/ � V � 0 �5�

where D=Dt is the material derivative of the ¯uid ele-
ment. Galerkin's weighted residual method and Green's
formula can be used to approximate the solution of
equation (4):�


f

Hmf
DV

Dt
ÿ pAf /HÿHmf

� �
d
f

ÿ
�

ÿf

H�pf dÿf � 0 �6�

The Bubnov±Galerkin method is used to approximate
the solution of a penalty function formulation of the
continuity equation. The incompressible ¯uid is there-
fore approximated as slightly compressible:

p � ÿ��/ � V � � ÿ� _u 0 �7�

where the superscript dot indicates a ®rst-order partial
derivative with respect to time and � is a very large
constant penalty parameter; typically � � 106 [14]. The
vector ®eld of the ¯uid acceleration can be expressed as

DV

Dt
� @

2up
@t2
� 2V

@2up
@x @t

� V 2 @
2up
@x2

�8�

Substituting equations (7) and (8) into equation (6)
results in�


f

Hmf �up � 2V _u 0p � V 2u}p

� �
d
f

�
�


f

�Af _u 0 /H d
f ÿ
�


f

H �Xf d
f

ÿ
�

ÿf

H�pf dÿf � 0 �9�

In the interaction of the inviscid ¯uid with the pipe, only
the normal compatibility is required while the slip con-
dition is imposed, namely, only the normal component
of the ¯uid displacement ®eld is continuous and there
exists a vector ®eld of the ¯uid displacement relative to
the pipe, ur:

�up ÿ uf� � n � 0 �10a�

�up ÿ uf� � n� ur � 0 �10b�

where n denotes the unit outward vector normal to the
surface (from the pipe into the ¯uid).

In addition to the kinematic boundary conditions, the
equilibrium of contact forces at the ¯uid±pipe interfaces
should be imposed, namely the normal stress at the
¯uid±pipe interfaces is equal to the mean pressure in the
¯uid while no restriction is imposed on the tangential
stresses:

n � � �pp � �pf� � n � 0 �11a�

t � �pp � n � 0 �11b�

t � �pf � n � 0 �11c�

where t is the unit vector tangential to the surface.
The displacement ®eld of the pipe may be expressed in

terms of the shape function matrix N, i.e., up � u0 �Nr
in which r and u0 represent the vectors of nodal dis-
placements and the prescribed function of kinematic
boundary conditions respectively. The terms in equa-
tions (2) and (5) containing contact forces at the ¯uid±
pipe interfaces can be eliminated when the test functions

Fig. 1 Schematic diagram of the system

OBSERVATIONS ON THE VIBRATION OF AXIALLY TENSIONED ELASTOMERIC PIPES 425

C09298 ß IMechE 2000 Proc Instn Mech Engrs Vol 214 Part C



for the ¯uid and pipe are identical, i.e. NT � H. Using
ordinary isoparametric ®nite elements for up and uf,
adding equation (3) to equation (9), and applying
boundary conditions and Green's theorem, the ele-
mental equation governing the motion of the ¯uid±pipe
system in the local coordinate system is

mi �r� ci _r� ki r � fi � f ldi �12�

where mi, ci and ki are the elemental mass, damping and
sti�ness matrices associated with the inertia, Coriolis
and centrifugal forces respectively and represent the
e�ect of the liquid on the pipe and vice versa; r, _r and �r
represent the vector ®elds of nodal displacements,
velocities and accelerations respectively of the pipe; fi
and f ldi are the vectors of nodal forces and ®ctitious
loads associated with kinematic correction respectively.
These elemental matrices and vectors are listed in the
Appendix and the other notation is detailed at the
beginning of the paper. The moving pipe and ¯owing
¯uid are fully coupled through the compatibility of
displacement and the equilibrium of contact forces. In
this analysis, the Eulerian approach and the concept of
®ctitious loads based on the in-plane kinematic correc-
tions [15, 16] due to large deformation are applied to
equation (12). The following set of di�erential equations
in the global coordinate system is obtained:

Mi �r� Ci _r� Ki r � Fi �13�

where

Mi � TT
i miTi, the structural mass matrix

Ci � TT
i ciTi, the structural sti�ness matrix

Ki � TT
i kiTi, the structural sti�ness matrix

Fi � TT
i � fi � f ldi �, the forcing vector

Note that, when assembling elemental matrices and
vectors, the nodal forces are common to adjacent ele-
ments and the added values are zero except at the
locations of concentrated or equivalent forces, or
moments. As the e�ects of shear deformation and rotary
inertia are incorporated in equation (13), the linearized
version of this equation may be adopted to conduct the
analysis of the vibration of a Timoshenko beam. The
transient response of this system can be straightfor-
wardly solved by using a Newmark [17] method and
eigenvalues can be extracted using the inverse simulta-
neous iteration method after linearizing the assembled
equations.

3 EXPERIMENTAL INVESTIGATION

In order to make a quantitative comparison, tests were
performed on a single-span elastomeric pipe conveying
¯uid (water) which was supported at both ends on a
vibrating platform. The pipe was mounted vertically as
shown in Fig. 2 to enable vibration measurements to be
performed using a laser velocity transducer, and to
alleviate any lateral gravitational e�ects. Vibratory
response at several positions along the pipe was mea-
sured by re-aligning the laser velocity transducer in
order to concentrate its beam at a speci®c point on the
pipe. The excitation and response signals, from the
accelerometer and laser velocity transducer (integrated
to displacement) respectively, were then processed by a
real-time fast Fourier transform analyser.

Fig. 2 Experimental apparatus
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The frequency of excitation was adjusted until the
phase shift between these two signals was �90�; this
indicated the resonant frequency in the linear regime.
This process was completed for various initial axial
tensions, ¯ow velocities and several amplitudes of seis-
mic excitation. It was observed that at the lower
amplitudes of seismic excitation the pipe exhibited linear
response behaviour, as expected. As the amplitude of
seismic excitation is increased at the same frequency,
non-linear behaviour of the pipe appears.

With the gradual increase in the amplitude of seismic
excitation, it was observed that there existed a critical
amplitude above which the vibration of the pipe con-
veying ¯uid exhibited non-linear response characteristics
with two stable regions in the frequency response graph,
as shown in Fig. 3. The lower stable region is obtained if
the excitation frequency is decreased gradually; con-
versely the upper stable region is obtained if the fre-
quency of excitation increases. The dynamic response
curve is skewed at the upper resonant frequency of
32.16Hz.

4 RESULTS AND DISCUSSION

Consider the case where the system is harmonically
excited by seismic excitation of the end supports:
y0�t� � yam sin�
t�, where 
 is the circular frequency of
the harmonic motion and yam is the amplitude. The
properties of components used in the experiment and
numerical simulation are listed in Table 1. For the
numerical simulation performed, the system was dis-
cretized into 16 elements.

For di�ering axial tensions, ¯ow velocities and
vibration modes, there are di�erent critical seismic

excitation amplitudes above which a non-linear response
prevails and vice versa. The pipe conveying ¯uid is
modelled for clamped±clamped boundary conditions.
The natural frequencies were predicted and measured
for the pipe with various ¯ow velocities and initial axial
tensions within the linear regime. Figure 4 shows the
e�ect of axial tension on the ®rst- and third-mode nat-
ural frequencies in the linear regime. The comparison of
theoretical and experimental results for the pipe in the
absence of or containing quiescent ¯uid is shown. Note
that, as expected, the natural frequencies increase with
increasing axial tension.

Figure 5 shows the e�ect of ¯ow velocity on the ®rst-,
third- and ®fth-mode natural frequencies. For higher
modes, the experimental natural frequencies would
appear to be higher than the theoretical values. The
maximum di�erence in natural frequencies between
prediction and experiment is 9 per cent; such dis-
crepancies may be due to experimental errors and the
axioms of the mathematical model, namely (a) non-ideal
clamping conditions, (b) the fact that ¯uid ¯ow was
considered as having a uniform ¯ow pro®le and (c) the
fact that the properties of the rubber were approximated
by assuming a linear elastic response. It is seen from

Fig. 3 Experimental dynamic response at x=L � 0:1 within the non-linear response regime for the pipe

containing quiescent ¯uid at T0 � 7:63N and yam � 0:000 32m

Table 1 Properties of components
used in the experiment and
numerical simulation

Length L 3.62�10ÿ1 m
Internal diameter Di 6.0�10ÿ3 m
External diameter De 9.7�10ÿ3 m
Young's modulus E 2.0924�106 N/m2

Poisson's ratio � 0.5
Pipe density �p 1128.56 kg/m3

Fluid density �f 1000.0 kg/m3
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Figs 4 and 5 that the frequencies obtained by this model
are in good agreement with the experiment.

The experimental dynamic response for several ¯ow
velocities within the linear regime is compared with
theoretical predictions in Fig. 6. An increase in the ¯ow
velocity leads to a decrease in the vibration amplitude. It
is also seen that the lateral displacements obtained by
this model are in good agreement with experiment.

Figure 7a shows the calculated response over 1 cycle
of transverse vibration of the pipe containing static ¯uid

for the ®rst mode within the non-linear regime. This
vibration exhibits a classical mode. When the ¯ow
velocity increases, the ¯uid exerts a great e�ect on modal
shape. The phase variation along the pipe span is shown
in Fig. 7b and the phase is seen to propagate upstream
due to the e�ect of the Coriolis force. The theoretical
predictions are con®rmed by experiment.

Almost all points of the pipe vibrate relatively with
di�erent phases. This will be further illustrated in the
complex plane below. Such shapes display travelling

Fig. 4 Comparison of theoretical natural frequencies with experiment for various axial tensions (a) in the
absence of ¯uid �!01 � 11:67Hz and !03 � 26:25Hz); and (b) with quiescent ¯uid �!01 � 9:30Hz and

!03 � 30:11Hz): Ð, theoretical results; +, �, experiment

Fig. 5 Comparison of theoretical natural frequencies with experiment at T0 � 7:63N for internal ¯ow

velocities �!01 � 14:30Hz, !03 � 44:23Hz and !05 � 77:49Hz): Ð, theoretical results; +, �, 4,
experiment
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Fig. 6 Linear dynamic response of the pipe conveying ¯uid for the third mode at T0 � 7:63N and

yam � 0:000 87m: Ð, theoretical results; +, �, 4, �, experiment

Fig. 7 Cycle of the lateral vibration of the pipe conveying ¯uid for the ®rst mode at T0 � 7:63N and
yam � 0:002 65m for (a) U � 0 m/s and (b) U � 7:19 m/s (x denote the distance between the upstream
end of the pipe and the node): Ð, theoretical results, downward motion; ± - ±, theoretical results,

upward motion; - - - -, experiment, downward motion; ± ±, experiment, upward motion
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wave forms; the speed of these waves is directly related
to the ¯ow velocity. Because of the Coriolis term, the
damping matrix becomes skew symmetric, and the
nodes of the modes move also with the change in ¯ow
velocity.

Figure 7b also shows that the pipe conveying ¯uid has
a dynamic response behaviour characterized by ®rst-
and second-mode coupling, albeit dominated by the ®rst
mode.

For the pipe supported at both ends, the second mode
has only one vibration node. Figure 8 shows that the
dynamic response behaviour of the pipe containing
¯owing ¯uid, although dominated by the second mode,
has strong components from the second and third
modes. It is also clearly shown in Figs 8a and b that the
e�ect of increasing ¯ow velocity is to shift the node
downstream. When the ¯uid within the pipe is sta-
tionary, the second- and even-order modes disappear
due to the nature of the symmetric seismic excitation
described above. This behaviour was veri®ed experi-

mentally. Figure 9 shows a comparison of theoretical
results of the node motion with experimental values for
the second vibratory mode. The experimental values are
only a little higher than those predicted.

Figure 10 shows the experimental results of nodal
shift with respect to the ¯ow velocity within the linear
and non-linear response regimes. This ®gure also clearly
shows that a vibration node moves forwards further
with increasing ¯ow rate within the non-linear response
regime than in the linear regime.

As the ¯ow velocity increases, the interaction between
the pipe and ¯uid becomes more pronounced. Accord-
ingly, in view of the strong in¯uence of Coriolis e�ects,
the eigenvectors are characterized not only by the
amplitudes but also by the phase. The calculated
eigenvectors for the ®rst mode on the complex plane are
shown in Fig. 11.

The angle between two tangent lines of any two points
on the eigenvector curve represents the phase di�erence
between these two points. Figure 11 also shows the

Fig. 8 Cycle of the lateral vibration of the pipe conveying ¯uid for the second mode at T0 � 7:63N and

yam � 0:000 32m, for (a) U � 5m/s and (b) U � 10m/s: Ð, downward motion; ± - ±, upward motion

Fig. 9 Nodal position dependence on internal ¯ow velocity for the second mode in the non-linear regime at

T0 � 7:63N and yam � 0:000 32m: +, experiment; Ð, theoretical results
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upper branch of the complex eigenvector `ellipse', gra-
dually moving towards a straight line as the ¯ow velo-
city decreases. For U � 0:0, the two branches coincide in
a straight line, which implies that the phase shift for any
point along the pipe is zero. With increase in the ¯ow
velocity, all points of the pipe vibrate with increasing
phase shift. Both modes in Fig. 11 are coupled to other
modes for all cases where U 6� 0:0.

Figure 12 highlights the e�ect of axial tension on the
®rst- and second-mode shapes of the pipe. As the axial
tension increases (the pipe becomes sti�er), the mode
shape ¯attens and the phase shift tends to be smaller.
The modes of lateral vibrations dominated by the cou-
pled ®rst and second modes were weakly coupled to
other modes as axial tension increased.

5 CONCLUSION

A ®nite element model has been developed to solve
dynamic problems of pipes conveying ¯uid, using a

penalty function technique and ®ctitious loads based on
the kinematic energy correction. This model can be
conveniently applied to both linear and non-linear
vibration analysis. The dynamic behaviour of an elas-
tomeric pipe containing ¯owing or quiescent ¯uid (or in
the absence of ¯uid), clamped at both ends, and under
an axial tension was examined. The matrix equations of
motion governing both the transverse and the long-
itudinal vibrations were solved by using the Newmark
method. Mode coupling for the pipe conveying ¯uid
was examined numerically and experimentally. In the
case of the pipe containing ¯owing ¯uid, it was found
that all excited modes were strongly coupled to other
modes.

Experimental investigations were performed for the
®rst three odd modes of vibration. Linear-regime nat-
ural frequencies were observed to decrease as the axial
tension decreases or the ¯ow velocity increases. It was
also observed, theoretically and experimentally, that the
vibrating nodes shifted downstream as the ¯ow velocity
increases. A further ®nding was that the third-mode
vibration nodes move further forwards within the non-

Fig. 10 Nodal position dependence on the internal ¯ow velocity for the third mode within the linear
�yam � 0:000 22m) and non-linear regime �yam � 0:000 27m) at T0 � 7:63N for (a) the upstream

node and (b) the downstream node

Fig. 11 First lateral mode shape in the complex plane at T0 � 7:63N, where the total number of nodes is 15:

±�±, U � 0:0m/s; ÿ�ÿ, U � 7:19m/s; ±�±, U � 10m/s
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linear response regime than in the linear regime, and
also with increasing ¯ow velocity. The experimental
results showed good agreement with the theory pre-
sented.
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APPENDIX

Elemental matrices and vectors

mi � l

�l
0

NT�mp �mf�N d�

ci �Ul

�l
0

NTmf N
0 d�ÿUl

�l
0

N 0Tmf N d�

� �Afl

�L
0

NT
uN

0
u d�

ki �l
�l
0

BTDB d� ÿU 2l

�l
0

N 0TmfN
0 d�

� T0l

�l
0

N 0Tw N 0w d�

fi �ÿ l

�l
0

BTDe0 d� � l

�l
0

NT� �Xp � �Xf� d�

� l

�l
0

NT� �pp � �pf� d�

ÿ l

�l
0

NT�mp �mf��u0 d�

ÿ �UNTmf N _r�U 2NTmf N
0r�jl0

f ldi � TT
i k

0
i u

ld

� TT
i fÿa1,2a2,a2l,a3,ÿ 2a4,a4lgT

r � fu1,w1,'1,u2,w2,'2gT

where

k0i � l

�l
0

BTDB d�

uld � �
0,0,'j ÿ sin'j,

l�1ÿ cos'j�1�,0,'j�1 ÿ sin'j�1
	T

a1 � ApE�1ÿ cos'j�

a2 � 6EI�'j ÿ sin'j�
l 2 � 12EI=KGAp

a3 � ApE�1ÿ cos'j�1�

a4 � 6EI�'j�1 ÿ sin'j�1�
l 2 � 12EI=KGAp

N �
h1 0 0 h2 0 0

0 h3 h4 0 h5 h6

0 h7 h8 0 h9 h10

26664
37775

D �
EAp 0 0

0 EI 0

0 0 KGAp

26664
37775

Nu � �h1 0 0 h2 0 0�
Nw � �0 h7 h8 0 h9 h10�

mp �
mp 0 0

0 �pI 0

0 0 mp

26664
37775, mf �

mf 0 0

0 �fIf 0

0 0 mf

26664
37775

OBSERVATIONS ON THE VIBRATION OF AXIALLY TENSIONED ELASTOMERIC PIPES 433

C09298 ß IMechE 2000 Proc Instn Mech Engrs Vol 214 Part C



and

B �

dh1
dx

0 0
dh2
dx

0 0

0
dh3
dx

dh4
dx

0
dh5
dx

dh6
dx

0 h3 � dh7
dx

h4 � dh8
dx

0 h5 � dh9
dx

h6 � dh10
dx

2666666664

3777777775

The structural matrices and forcing vector are updated
as the nodal coordinates are updated by using a

coordinate transformation matrix such as

Ti �

cos'i ÿsin'i 0 0 0 0

sin'i cos'i 0 0 0 0

0 0 1 0 0 0

0 0 0 cos'i�1 ÿsin'i�1 0

0 0 0 sin'i�1 cos'i�1 0

0 0 0 0 0 1

266666666666664

377777777777775
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