21 research outputs found

    Somatic mosaicism by a de novo MLH1 mutation as a cause of Lynch syndrome

    Get PDF
    Background: Lynch syndrome (LS) is caused by germline mismatch repair (MMR) gene mutations. De novo MMR gene mutations are rare, and somatic mosaicism in LS is thought to be infrequent. We describe the first case of somatic mosaicism by a de novo MLH1 mutation for a patient diagnosed with a rectosigmoid adenocarcinoma at age 31. Methods: Twelve years after initial colorectal cancer diagnosis, tumor tissue of the patient was tested with sensitive next generation sequencing (NGS) analysis for the presence of somatic MMR mutations. Results: In tumor tissue, an inactivating MLH1 mutation (c.518_519del; p.(Tyr173Trpfs*18)) was detected, which was also present at low level in the blood of the patient. In both parents, as well as the patient's sisters, the mutation was not present. Conclusion: We show that low‐level mosaicism can be detected by using high‐coverage targeted NGS panels on constitutional and/or tumor DNA. This report illustrates that by using sensitive sequencing techniques, more cases of genetic diseases driven by mosaic mutations may be identified, with important clinical consequences for patients and family members

    Mutational profiling of kinases in glioblastoma

    Get PDF
    Background: Glioblastoma is a highly malignant brain tumor for which no cure is available. To identify new therapeutic targets, we performed a mutation analysis of kinase genes in glioblastoma.Methods: Database mining and a literature search identified 76 kinases that have been found to be mutated at least twice in multiple cancer types before. Among those we selected 34 kinase genes for mutation analysis. We also included IDH1, IDH2, PTEN, TP53 and NRAS, genes that are known to be mutated at considerable frequencies in glioblastoma. In total, 174 exons of 39 genes in 113 glioblastoma samples from 109 patients and 16 high-grade glioma (HGG) cell lines were sequenced. Results: Our mutation analysis led to the identification of 148 non-synonymous somatic mutations, of which 25 have not been reported before in glioblastoma. Somatic mutations were found in TP53, PTEN, IDH1, PIK3CA, EGFR, BRAF, EPHA3, NRAS, TGFBR2, FLT3 and RPS6KC1. Mapping the mutated genes into known signaling pathways revealed that the large majority of them plays a central role in the PI3K-AKT pathway. Conclusions: The knowledge that at least 50% of glioblastoma tumors display mutational activation of the PI3K-AKT pathway should offer new opportunities for the rational development of therapeutic approaches for glioblastomas. However, due to the development of resistance mechanisms, kinase inhibition studies targeting the PI3K-AKT pathway for relapsing glioblastoma have mostly failed thus far. Other therapies should be investigated, targeting early events in gliomagenesis that involve both kinases and non-kinases

    Families with BAP1-tumor predisposition syndrome in The Netherlands: Path to identification and a proposal for genetic screening guidelines

    Get PDF
    Germline pathogenic variants in the BRCA1-associated protein-1 (BAP1) gene cause the BAP1-tumor predisposition syndrome (BAP1-TPDS, OMIM 614327). BAP1-TPDS is associated with an increased risk of developing uveal melanoma (UM), cutaneous melanoma (CM), malignant mesothelioma (MMe), renal cell carcinoma (RCC), meningioma, cholangiocarcinoma, multiple non-melanoma skin cancers, and BAP1-inactivated nevi. Because of this increased risk, it is important to identify patients with BAP1-TPDS. The associated tumors are treated by different medical disciplines, emphasizing the need for generally applicable guidelines for initiating genetic analysis. In this study, we describe the path to identification of BAP1-TPDS in 21 probands found in the Netherlands and the family history at the time of presentation. We report two cases of de novo BAP1 germline mutations (2/21, 9.5%). Findings of this study combined with previously published literature, led to a proposal of guidelines for genetic referral. We recommend genetic analysis in patients with ≥2 BAP1-TPDS-associated tumors in their medical history and/or family history. We also propose to test germline BAP1 in patients diagnosed with UM <40 years, CM <18 years, MMe <50 years, or RCC <46 years. Furthermore, other candidate susceptibility genes for tumor types associated with BAP1-TPDS are discussed, which can be included in gene panels when testing patients

    Mutational Profiling of Cancer Candidate Genes in Glioblastoma, Melanoma and Pancreatic Carcinoma Reveals a Snapshot of Their Genomic Landscapes

    No full text
    A recent systematic analysis of 18.191 well annotated coding sequences (RefSeq) in breast and colorectal cancers has led to the identification of somatic mutations in 1.718 genes (Wood et al., 2007). Based on statistical parameters 280 of these have been denominated candidate cancer (CAN) genes. This analysis has provided an interesting snapshot of the landscape of tumor genomes by showing that they contain a few frequently mutated genes (denominated 'mountains'). On the contrary, the large majority of CAN genes are altered at low frequency (designated 'hills'). Whether 'hill' type CAN genes are tumor specific is largely unknown. To address this question we evaluated the mutational profiles of 27 'hill' CAN genes in glioblastoma, melanoma and pancreatic carcinoma by sequencing the exons previously found mutated by Wood and colleagues. Only 4 of the breast/colorectal 'hill' type CAN genes (SMAD4, MYO18B, NAV3 and MMP2) were also mutated in melanoma and pancreatic carcinoma, while none was altered in glioblastoma. These results suggest that 'hill' type CAN genes are not frequently shared by different tumor types and that their mutation patterns are tissue specific. Tumor-specific genome wide mutational profiling will be required to identify 'hill' type CAN genes that characterize the genomic landscapes of each cancer lineage. (c) 2008 Wiley-Liss, In

    The nature and timing of specific copy number changes in the course of molecular progression in diffuse gliomas: further elucidation of their genetic "life story"

    No full text
    Item does not contain fulltextUp till now, typing and grading of diffuse gliomas is based on histopathological features. However, more objective tools are needed to improve reliable assessment of their biological behavior. We evaluated 331 diffuse gliomas for copy number changes involving 1p, 19q, CDKN2A, PTEN and EGFR(vIII) by Multiplex Ligation-dependent Probe Amplification (MLPA(R), Amsterdam, The Netherlands). Specifically based on the co-occurrence of these aberrations we built a model for the timing of the different events and their exact nature (hemi- --> homozygous loss; low-level gain --> (high-copy) amplification) in the course of molecular progression. The mutation status of IDH1 and TP53 was also evaluated and shown to correlate with the level of molecular progression. The relevance of the proposed model was confirmed by analysis of 36 sets of gliomas and their 39 recurrence(s) whereas survival analysis for anaplastic gliomas confirmed the actual prognostic relevance of detecting molecular malignancy. Moreover, based on our results, molecular diagnostic analysis of 1p/19q can be further improved as different aberrations were identified, some of them being indicative for advanced molecular malignancy rather than for favorable tumor behavior. In conclusion, identification of molecular malignancy as proposed will aid in establishing a risk profile for individual patients and thereby in therapeutic decision making
    corecore